

Proposed Service Station Lot 1 (1351) and Lot 132 (1369) Wanneroo Road, Wanneroo

Document history and status

Author	Revision	Approved by	Date approved	Revision type
M Rasouli	r01	B Bordbar	Bordbar 06/09/2021	
M Rasouli	r01a	B Bordbar	B Bordbar 07/09/2021	

File name: t21.142.mr.r01

Author: Mohammad Rasouli

Project manager: Mohammad Rasouli

Client: Leyton Property

Project: Lot 1 (1351) and Lot 132 (1369) Wanneroo Road, Wanneroo

Document revision: r01a

Project number: t21.142

2021 Copyright in all drawings, reports, specifications, calculations and other documents provided by the Consultant in connection with the Project shall remain the property of the Consultant.

The Client alone shall have a license to use the documents referred to above for the purpose of completing the Project, but the Client shall not use, or make copies of, such documents in connection with any work not included in the Project, unless written approval is obtained from the Consultant or otherwise agreed through a separate contract.

TABLE OF CONTENTS

1	INTRODUCTION	1
2	EXISTING SITUATION	3
2.1	Existing Site Use, Access and Parking	3
2.2	SURROUNDING ROAD NETWORK AND TRAFFIC MANAGEMENT ON FRONTAGE ROADS	3
2.3	EXISTING TRAFFIC VOLUMES ON ROADS	5
2.4	HEAVY VEHICLES	6
2.5		
2.6		
2.7		
2.8	CRASH DATA	9
3	DEVELOPMENT PROPOSAL	11
3.1	PROPOSED SITE USE	11
3.2	PROPOSED ACCESS FOR ALL MODES	11
4	CHANGES TO SURROUNDING TRANSPORT NETWORKS	13
5	INTEGRATION WITH SURROUNDING AREA	14
6	TRAFFIC ASSESSMENT	15
6.1	ASSESSMENT YEARS AND TIME PERIODS	15
6.2	TRIP GENERATION AND DISTRIBUTION.	15
ϵ	5.2.1 PROPOSED DEVELOPMENT TRAFFIC GENERATION	15
6.3		
6.4		
6.5	NETWORK OPERATION	
6.6		
6.7 6.8		
7	PARKING	25
8	PROVISION FOR HEAVY VEHICLES	26
9	PUBLIC TRANSPORT ACCESS	27
10	PEDESTRIAN ACCESS	28
11	CONCLUSIONS	29
APPE	NDIX A: ENDORSED DETAIL AREA PLAN	
APPE	NDIX B: PROPOSED ORIGINAL SITE PLAN	
APPE	NDIX C: DEVELOPMENT SITE PLAN	
APPE	NDIX D: INTERSECTION ANALYSIS	
APPE	NDIX E: TURN PATH ANALYIS	

REPORT FIGURES

Figure 1: Location of the subject site
Figure 2. Site location within Metropolitan Region Scheme
Figure 3. Existing Road Hierarchy4
Figure 4: Existing traffic counts AM and PM hours5
Figure 5. Existing heavy vehicle road network classification (RAV)6
Figure 6: Existing bus routes (source: Transperth)
Figure 7: Existing bus routes (source: Transperth)
Figure 8: Transperth Service Development Plan Map9
Figure 9: Proposed development access/ egress points
Figure 10: Total peak hour traffic generated by the proposed development –AM and PM peak hours18
Figure 11: Post-development traffic flows–2021 AM and PM peak hours
Figure 12: Estimated 10-year total post-development traffic flows – 2031 AM and PM peak hours19
Figure 13: post development SIDRA Network Model
Figure 14: 10-year Post-development weekday AM peak hour network analysis – queue storage ratio 22
Figure 15: 10-year post-development weekday PM peak hour network analysis – queue storage ratio.23

REPORT TABLES

Table 1. Crash history for the Wanneroo Road/Clarkson Avenue intersection	10
Table 2: Estimated proposed development traffic generation	17

1 Introduction

This TIA has been prepared by Transcore on behalf of Leyton Property with regards to the proposed service station at Lot 1 (1351) and Lot 132 (1369) Wanneroo Road, Wanneroo.

Transcore was the traffic engineer for the previous BP service station project at this location (which has not been proceed based on our understanding). Accordingly, the proposed access/ egress and layout of the development has been developed in accordance with the City's requirements (as per our previous discussions with the City officers for the previous project) for this site. Further the same traffic modelling methodology and assumptions from the previous project, which has been accepted by approval authorities, has been adopted but updated for this project.

The subject site is currently vacant and is located at the south-west corner of the fourway signalised intersection of Wanneroo Road/ Clackson Avenue/ Mowatt Close as shown in **Figure 1**. This intersection serves the endorsed Detailed Development Plan (DAP) for Drovers Place Central Precinct to the west of Wanneroo Road, which Lot 1 (1351) and Lot 132 (1369) Wanneroo Road is part of this precinct. A copy of the endorsed DAP is provided in **Appendix A**.

Figure 1 illustrates the location of the Central Precinct and the subject site. Access and egress to/from the proposed development would be indirectly from Wanneroo Road via the existing signalised intersection of Wanneroo Road/ Clackson venue/Mowatt Close.

Figure 1: Location of the subject site

The key issues that will be addressed in this report include the traffic generation of the proposed development, capacity analysis of the proposed 4-way intersection on Mowatt Close (in line with the approved DAP) and the recently constructed 4-way signalised intersection of Wanneroo Road/Clarkson Avenue/ Mowatt Close.

For the assessment of the existing signalised intersection in 2031, the estimated traffic from the entire Central Precinct area, including the approved and constructed development at Lots 1 & 132 Wanneroo Road situated at the north side of Mowatt Close, will be considered. It should be noted that Transcore was the traffic engineers for the recently approved development and constructed service station on the northern side of Mowatt Close and the approved development and recently constructed McDonald's restaurant on the south east corner of the signalised intersection.

The location of the subject site within the *Metropolitan Region Scheme* context is illustrated in **Figure 2**. The subject site is zoned as "*Urban*" in the *MRS*. The MRS map also classified Wanneroo Road as a "*Primary Regional Road*".

Figure 2. Site location within Metropolitan Region Scheme

2 Existing Situation

2.1 Existing Site Use, Access and Parking

Currently the site is vacant and does not generate any traffic. The land to the south of the site is also mainly vacant. There are existing retail and commercial land uses within the northern part of the Central Precinct.

The Central Precinct is accessed via the signalised intersection, the connection to the Northern Precinct and future connection to the Southern Precinct. The proposed service station will be accessed via the four-way intersection on Mowatt Close with its parking catered on-site.

2.2 Surrounding Road Network and Traffic Management on Frontage Roads

The existing road network and its classification in the Main Roads WA *Functional Road Hierarchy* is illustrated in **Figure 3**.

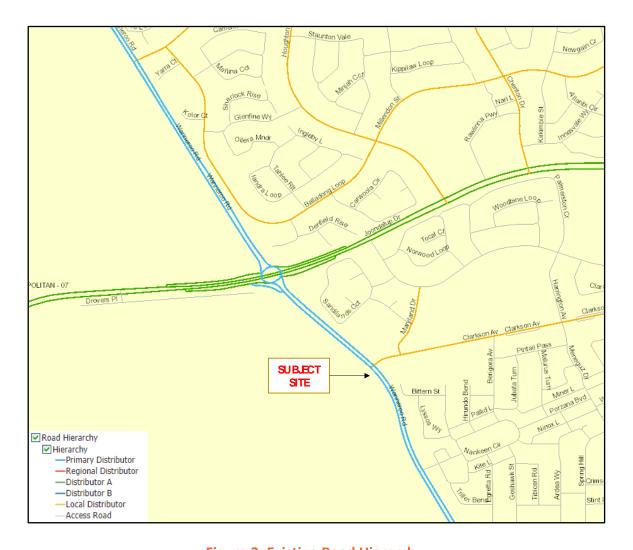


Figure 3. Existing Road Hierarchy

Wanneroo Road is a dual divided carriageway with a speed limit of 70km/h in the vicinity of the subject site. On street cycle lanes are provided on either side of the road. It is reserved as a Primary Regional Road in the Metropolitan Region Scheme and is classified as a Primary Distributor Road in the Main Roads WA Functional Road Hierarchy.

The intersection of Wanneroo Road/Clarkson Avenue/Mowatt Close has recently been constructed as a four-way signalised intersection with left turn and right turn pockets on all four legs of intersection. The intersection of Wanneroo Road and Joondalup Drive has recently been upgraded to a grade separated interchange.

There is an existing intersection on Wanneroo Road serving the existing retail/commercial complex located at lots 810 and 811. This intersection is located approximately 200m south of Wanneroo Road/Joondalup Drive interchange and operates as left-in/left-out/right-in, with a left-turn slip lane and right-turn pocket on Wanneroo Road.

Clarkson Avenue is a single undivided carriageway with pedestrian paths on both sides of the road. It is classified as a Local Distributor in Main Roads WA Functional Road Hierarchy and operates under the speed limit of 50km/h in the vicinity of the subject site.

Drovers Place provides access to properties along the northern frontage of the Drovers Place Precinct. It is constructed as a 6m-wide, kerbed single carriageway road. Drovers Place is subject to the 50 km/h speed limit.

Mowatt Close, in the vicinity of the subject site is recently constructed as a single divided carriageway road with pedestrian path on the northern side of the road.

2.3 Existing Traffic Volumes on Roads

According to the latest available traffic count data from Main Roads WA, Wanneroo Road (south of Joondalup Drive) carried an average weekday traffic volume of about 23,733vpd in 2020/21. The recorded heavy vehicle component of total traffic mix was approximately 8.2%.

According to the latest available traffic count data from Main Road WA, Clarkson Avenue (east of Wanneroo Road) carried an average weekday traffic volume of 3,384vpd in 2017/18. The recorded heavy vehicle component of total traffic mix was approximately 4.3%. Existing weekday AM and PM peak hour traffic flows from February 2021 SCATS data for the Wanneroo Road/Clarkson Avenue/Mowatt Close signalised intersection are shown in **Figure 4**.

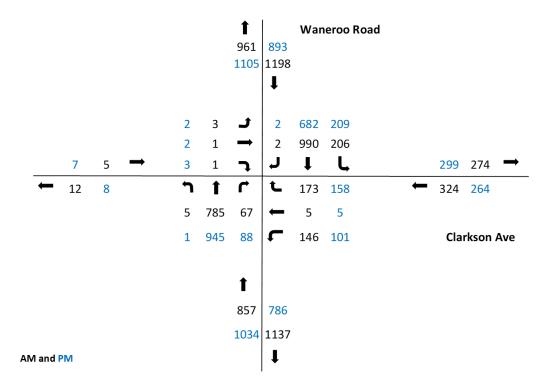


Figure 4: Existing traffic counts AM and PM hours

2.4 Heavy Vehicles

Restricted Access Vehicle (RAV) Network routes are designated for access by large heavy vehicle combinations, which is managed by Main Roads WA.

Wanneroo Road adjacent to the subject site forms part of RAV Tandem Drive Network 4 as shown in **Figure 5**. The RAV 4 Network classification permits a variety of prime mover and trailer combinations, up to a maximum length of 27.5m.

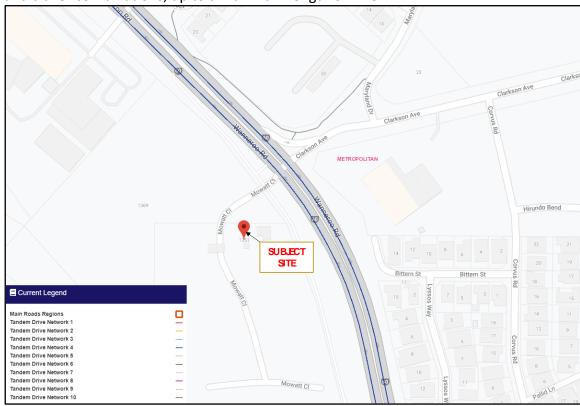


Figure 5. Existing heavy vehicle road network classification (RAV)

2.5 Public Transport Access

Nearby public transport services are illustrated in **Figure 6**. The closest existing bus route to the development area is Bus Route No. 468 which traverses along Wanneroo Road. This bus route provides service between Whitfords Station and Joondalup Station via Wanneroo Central Shopping Centre.

Other bus route in the vicinity of the subject site is Bus Route No. 390 which runs along Wanneroo Road but gets diverted to/from Clarkson Avenue.

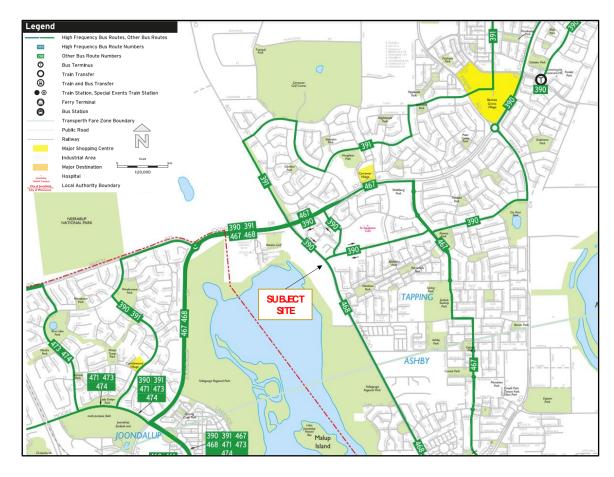


Figure 6: Existing bus routes (source: Transperth)

2.6 Pedestrian and Cyclist Facilities

Currently a concrete shared path exists along Wanneroo Road fronting the subject site. This shared path continues north and connects with Drovers Place. A shared path is also in place along the northern side of Mowatt Close. Pedestrian crossing facilities are provided at the signalised intersection on Wanneroo Road/ Clarkson Avenue/ Mowatt Close to facilitate the safe pedestrian/cyclist crossing at the intersection.

The Department of Transport's Perth Bike Map series (refer **Figure 7**) shows that Wanneroo Road also has a shared path on the eastern side which connects to the existing shared path on Clarkson Avenue and on the western side which connects to Dovers Place.

Figure 7: Existing bus routes (source: Transperth)

2.7 Public Transport Network Planning

The Department of Transport plan, Public Transport for ultimate network for city of 3.5 million population, envisages a combination of a future light rail and bus rapid transit route from Perth to Joondalup providing a cross-suburban link between these two areas. However, this is a long-term plan beyond 2031 (refer **Figure 8**).

Figure 8: Transperth Service Development Plan Map

2.8 Crash Data

Information available on Main Roads WA website provides crash statistics for Wanneroo Road/Clarkson Avenue intersection during the five-year period ending in December 2020 (mainly before signalisation of this intersection).

The crash records indicate that Wanneroo Road and Clarkson Avenue intersection recorded a total of 6 crashes with one casualty and no fatalities during the five-year period. Majority of crashes recorded were rear end types. More details on the crash records are provided in **Table 1**.

It should be noted that recent signalisation of the intersection of Wanneroo Road/Clarkson Avenue would improve safety and traffic operation of the intersection.

Table 1. Crash history for the Wanneroo Road/Clarkson Avenue intersection

Intersection	Total Crashes	Casualty				
Wanneroo Road	Wanneroo Road/Clarkson Avenue					
Right Angle	Right Angle Rear End Rt Turn Thru Pedestrian					
1	2	0	0	1	5	

3 Development Proposal

3.1 Proposed Site Use

The proposed development is for a service station with convenience store comprising:

- Light vehicle canopy with 16 fuelling positions (8 bowsers) for light vehicles;
- 8 car parking bays including 1 ACROD bay;
- One delivery bay; and,
- One air & water bay.

The layout of the proposed development is included in **Appendix C.** The proposed access/ egress and layout of the development has been developed in accordance with the City's requirements for the previous BP service station project at this location. The fuel tanker and service vehicle movements for the proposed development are the same as the previously approved BP service station at this location.

The proposed development provides 16 fuelling positions (8 bowsers) for light vehicles. It should be noted that the provision of 8 bowsers is in line with the business plan of the proposed operator that provides additional bowsers to ensure increased customer amenity and reduce wait times and reduce the risk of any internal congestion. Accordingly, this operator does not provide additional bowsers to increase patronage in proportion to the number of bowsers.

3.2 Proposed Access for all Modes

Access and egress to/from the proposed development is in line with the City's requirements as discussed and agreed for the previous BP service station project at this site. **Figure 9** illustrates the proposed development crossovers on continuation of Mowatt Close and the future access/ egress to the proposed developments to the south of the site. Crossover 1 is entry only and crossover 2 is entry and exit.

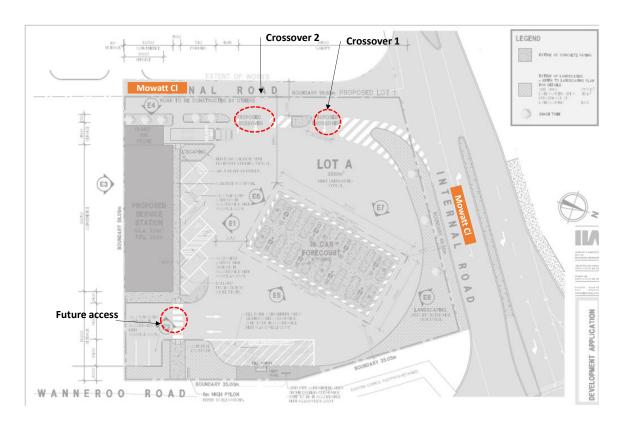


Figure 9: Proposed development access/ egress points

4 Changes to Surrounding Transport Networks

The recent changes to the surrounding road network include signalisation of the Wanneroo Road/ Clarkson Avenue/ Mowatt Close and construction of the grade separated interchange at Wanneroo Road and Joondalup Drive intersection.

According to the information obtained from Main Roads WA Wanneroo Road may be upgraded to six lanes in this vicinity in the longer term.

5 Integration with Surrounding Area

The proposed development land use is in line with existing and planned land uses in the locality. The proposed development promotes internal connectivity with other planned uses in the Central Precinct area.

Drovers Place connects with Mowatt Close via a connection through the approved development to the north of Mowatt Close.

6 Traffic Assessment

6.1 Assessment Years and Time Periods

The assessment years that have been adopted for this analysis are immediately post-development (assumed as 2021) and 2031 for the 10-year post development scenarios.

6.2 Trip Generation and Distribution

6.2.1 Proposed Development Traffic Generation

The traffic volumes that would be generated by the proposed development have been estimated using trip generation rates derived from:

♣ ITE Trip Generation Manual 10th Edition

The trip rates which were used to estimate the proposed development traffic generation are as following:

Gasoline/Service Station with Convenience Market (945) – Regular Fuelling Points

- ♣ AM Peak hour: 12.47 trips per fuelling point.
- PM Peak hour: 13.99 trips per fuelling point.
- Weekday: 206 trips per fuelling point.

The proposed development plan entails a convenience store with 16 light vehicle fuelling positions (8 bowsers). As outlined earlier the number of bowsers proposed by the current operator is to improved customer amenity, reduce wait times and reduce the risk of internal congestion. As such the trip generation won't be proportional with number of bowsers. As a result, the increased number of bowsers is not expected to increase the traffic generation of the development in any significant way, particularly considering that another service station is located immediately north of Mowatt Close. Accordingly, the estimation of the proposed development traffic generation was based on the typical service stations with 8 bowsers.

As detailed in **Table 2**, it is estimated that the proposed development would generate approximately 1,314 trips per day (both inbound and outbound) with approximately 100 and 90 trips during AM and PM peak hours respectively.

For this development conservatively 60% passing trade is assumed. Therefore, the net addition of traffic when accounting for passing trade is **+525vpd** (daily), **+40vph** (AM peak hour) and **+36vph** (PM peak hour) on the surrounding road.

The directional split of inbound and outbound trips for the proposed development is estimated to be about 50/50 for inbound/outbound trips during the peak hours.

The total proposed development traffic is outlined in **Figure 10**.

Table 2: Estimated proposed development traffic generation

Land use	Quantity Daily Rate AM Peak	AM Book	DM Book Cros	Cross Trade Daily Trips	ANA Trins	PM Trips	AM		PM			
		AIVI FEAK PIVI	FIVIFEAN	CIUSS II aue	aue Daily Ilips	Alvi IIIps	FIVI IIIPS	IN	OUT	IN	OUT	
Service Station + Convenience Strore	8	205.36	12.47	13.99	0.20	1314	100	90	50	50	45	45
TOTALTRAFFIC					1314	100	90	50	50	45	45	

Passing Trade Component

	AI	И	P	М
Daily Trips	IN	OUT	IN	OUT
789	30	30	27	27
789	30	30	27	27

Non Passing Trade Component

	Α	M	PM		
Daily Trips	IN OUT		IN	OUT	
525	20	20	18	18	
525	20	20	18	18	

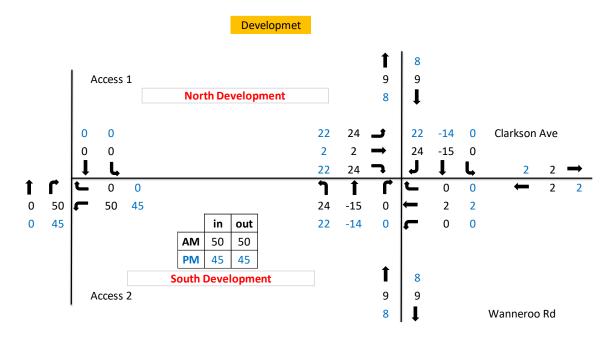


Figure 10: Total peak hour traffic generated by the proposed development –AM and PM peak hours

6.3 Traffic Flows

The existing traffic counts for the relevant roads were established from February 2021 SCATS data (refer **Figure 4**). The total post development traffic for the assessment year of 2021 is detailed in **Figure 11**. It should be noted that the post development traffic volumes include the traffic from the approved and under construction development on the northern side of Mowatt Close

To approximate the 10-year post development traffic, a conservative traffic growth of 20% was applied to the background traffic through the intersection of Wanneroo Road/Clarkson Avenue/ Mowatt Close.

The total ten-year post-development traffic volumes are presented in Figure 12.

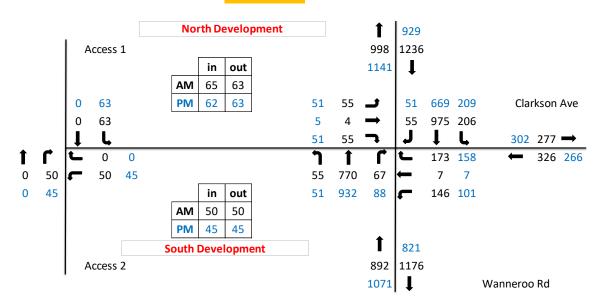


Figure 11: Post-development traffic flows-2021 AM and PM peak hours

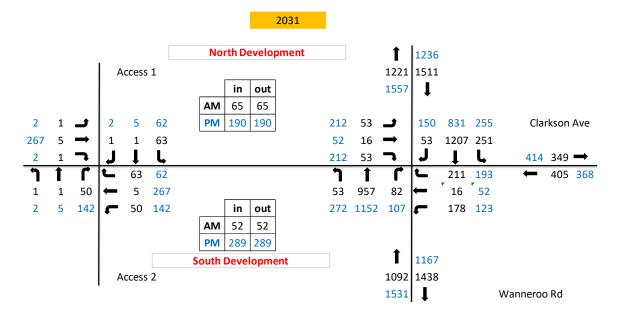


Figure 12: Estimated 10-year total post-development traffic flows – 2031 AM and PM peak hours

6.4 Analysis of Intersections and Development Accesses

The operation of the four-way intersection of Wanneroo Road/ Clackson Avenue/Mowatt Close and the development connection to Mowatt Close has been analysed for existing, post-development and 10-year post development scenarios for the weekday AM and PM peak hours.

Capacity analysis was undertaken using the SIDRA Network computer software package. SIDRA is an intersection modelling tool commonly used by traffic engineers for all types of intersections. SIDRA outputs are presented in the form of Degree of Saturation, Level of Service, Average Delay and 95% Queue. These characteristics are defined as follows:

- Degree of Saturation (DoS): is the ratio of the arrival traffic flow to the capacity of the approach during the same period. The Degree of Saturation ranges from close to zero for varied traffic flow up to one for saturated flow or capacity.
- Level of Service (LoS): is the qualitative measure describing operational conditions within a traffic stream and the perception by motorists and/or passengers. In general, there are 6 levels of service, designated from A to F, with Level of Service A representing the best operating condition (i.e. free flow) and Level of Service F the worst (i.e. forced or breakdown flow).
- Average Delay: is the average of all travel time delays for vehicles through the intersection.
- 95% Queue: is the queue length below which 95% of all observed queue lengths fall.

The results of the SIDRA analysis are detailed in **Appendix D** and briefly explained in this section of the report.

A Network SIDRA model was prepared to assess the exiting intersection of Wanneroo Road/ Clackson Avenue/Mowatt Close and the connection to Mowatt Close. A conceptual diagram of the SIDRA model developed for analysis is shown in **Figure 13**.

The SIDRA model was coded with reference to the *Main Roads Operation Modelling Guidelines Version No. 1.1.* All relevant parameters such as heavy vehicle groups, PCU factors etc. were coded as per Main Roads Guidelines.

NETWORK LAYOUT

+ Network: N101 [(2019) - PM]

New Network Network Category: (None)

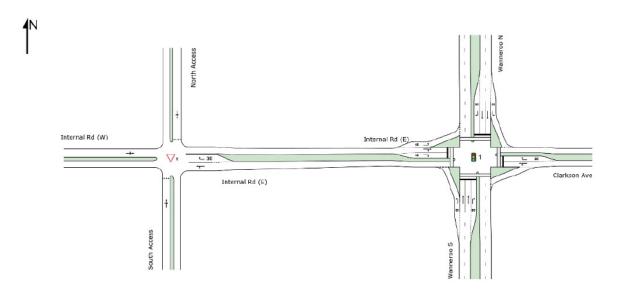


Figure 13: post development SIDRA Network Model

Wanneroo Road traffic lights

SIDRA analysis indicates that this intersection will operate satisfactorily with overall level of service C and D during the post development (2021) AM and PM scenarios respectively. The 95% queue back at the traffic lights on Mowatt Close is approximately 15m-17m for both AM and PM peak hours.

The 10-year post development analysis reported overall level of service of D for both AM and PM peak hours. Increased delays and queues are reported for the through traffic on Wanneroo Road. However, the anticipated delays will not result in excessive queuing and are within the range of what can reasonably be expected during the peak hours in 10 years' time. According to the information obtained from Main Roads WA Wanneroo Road may be upgraded to six lanes in this vicinity sometime in the future which will improve traffic operations at the intersection.

Internal 4-way intersection on Mowatt Close

SIDRA analysis indicates that the internal intersection on Mowatt Close will operate satisfactorily in the post development and 10 year post development scenarios during both AM and PM peak hours. All movements operate well with minimal delays and queuing.

6.5 Network Operation

Relevant SIDRA network outputs were reviewed for both AM and PM peak hours to assess the operation of the proposed internal intersection and the signalised intersection at Wanneroo Road as a network.

As detailed in **Figure 14** and **Figure 15**, no queue back from the traffic lights to the internal four-way intersection is reported during the 2031 AM peak hour. During the 2031 PM peak hour 95% queue back would extend to the internal intersection at Mowatt Close however due to the relatively low level of turn movements at this intersection, no internal queues (back to the shared access easement) are expected. The reported queue back on the internal road is occurring occasionally (5% of the time) during the PM peak hours only and on average the reported queue is about 40m which would not pass the internal intersection. The reported good level of service for all movements at the four-way intersection confirms satisfactory traffic operations during the 2031 AM and PM peak hours.

QUEUE DISTANCE (%ILE)

95% Back of Queue Distance per lane (metres)

♦ Network: N101 [2031 - AM]

New Network

Network Category: (None)

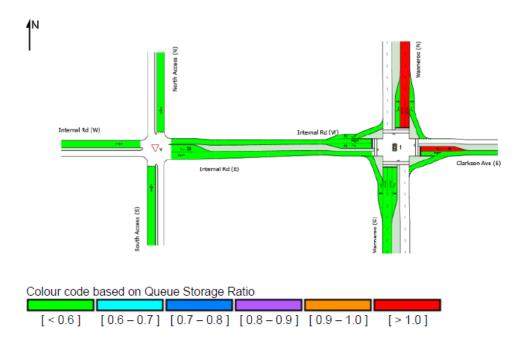


Figure 14: 10-year Post-development weekday AM peak hour network analysis – queue storage ratio

QUEUE DISTANCE (%ILE)

95% Back of Queue Distance per lane (metres)

ф

†

Network: N102 [2031 - PM]

New Network

Network Category: (None)

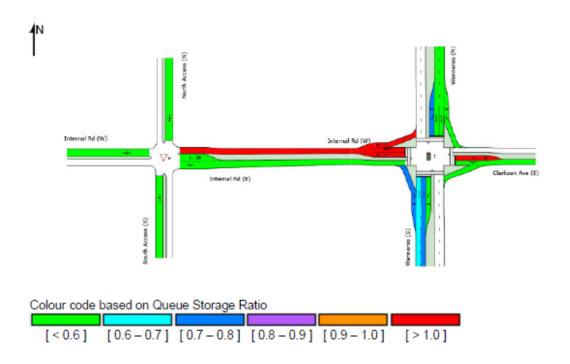


Figure 15: 10-year post-development weekday PM peak hour network analysis – queue storage ratio

As outlined earlier, the anticipated future upgrade of Wanneroo Road in this vicinity will improve traffic operations at the signalised intersection and will reduce the queue back on Mowatt Close.

6.6 Impact on Surrounding Roads

The WAPC *Transport Impact Assessment Guidelines* (2016) provides the following guidance on the assessment of traffic impacts:

"As a general guide, an increase in traffic of less than 10 percent of capacity would not normally be likely to have a material impact on any particular section of road, but increases over 10 percent may. All sections of road with an increase greater than 10 percent of capacity should therefore be included in the analysis. For ease of assessment,

an increase of 100 vehicles per hour for any lane can be considered as equating to around 10 percent of capacity. Therefore, any section of road where development traffic would increase flows by more than 100 vehicles per hour for any lane should be included in the analysis."

The proposed development will not increase traffic flows near the quoted WAPC threshold to warrant further detailed analysis. Accordingly, the impact on the surrounding road network will be insignificant.

6.7 Impact on Neighbouring Areas

The traffic generated by the proposed development is not expected to significantly affect surrounding areas and the road network has been designed to accommodate this type of development traffic.

6.8 Traffic Noise and Vibration

It generally requires a doubling of traffic volumes on a road to produce a perceptible 3dB (A) increase in road noise. The proposed development will not increase traffic volumes on surrounding roads anywhere near this level.

7 Parking

The proposed development will provide 9 car parking spaces including one ACROD bay and one air & water bay.

It is therefore considered that the proposed parking provision is sufficient to accommodate the needs of the proposed development.

8 Provision for Heavy Vehicles

The largest truck which is expected to use the service station would be 19.0m long fuel tanker which would enter and exit the site from the proposed development crossovers on Mowatt Close.

12.5m service vehicle will enter/exit the site in a similar manner to the 19.0m long fuel tanker. Service vehicles enter the site from the northern entry only crossover on Mowatt Close, pull up near the bin store and then turn around within the site and exit the site from the southern full movement crossover on Mowatt Close.

Turn path analysis undertaken for 19.0m fuel tanker and 12.5m service vehicle confirm satisfactory access, egress and circulation within the site. Turn path plans are included in **Appendix E**.

9 Public Transport Access

The existing public transport services within the vicinity of the site are outlined in sections 3.5 and 3.7 of this report.

10Pedestrian Access

Details of the pedestrian and cyclist facilities in this locality are detailed in section 3.6 of the report.

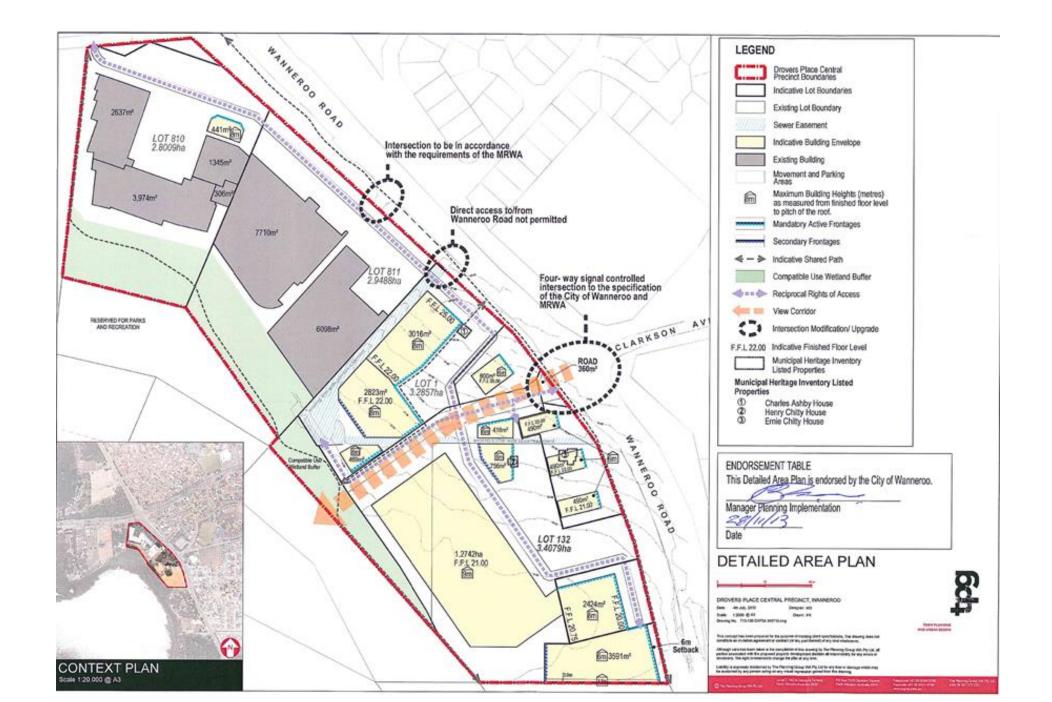
11 Conclusions

This Transport Impact Assessment (TIA) is prepared by Transcore with respect to the proposed service station and convenience store development to be located on Lot 1 (No. 1351) Wanneroo Road, Tapping, in the City of Wanneroo.

Transcore was the traffic engineer for the previous BP service station project at this location (which has not been proceed based on our understanding). Accordingly, the proposed access/ egress and layout of the development has been developed in accordance with the City's requirements (as per our previous discussions with the City officers for the previous project) for this site. Further the same traffic modelling methodology and assumptions from the previous project, which has been accepted by approval authorities, has been adopted but updated for this project.

The proposed development layout has been assessed with respect to the movements of fuel tankers and service vehicles. Swept path analysis confirms that the proposed entry and egress arrangements and the site layout facilitate safe and efficient vehicle circulation.

The SIDRA Network analysis undertaken as part of the Transport Impact Assessment allows for the approved development traffic to the north of Mowatt Close/subject site and confirms satisfactory operation of the 4-way intersection on Mowatt Close and the existing signalised intersection of Wanneroo Road/ Clarkson Avenue/Mowatt Close for post-development and 10 years post-development scenarios.


The proposed car parking is considered to satisfactorily meet the needs of the proposed development.

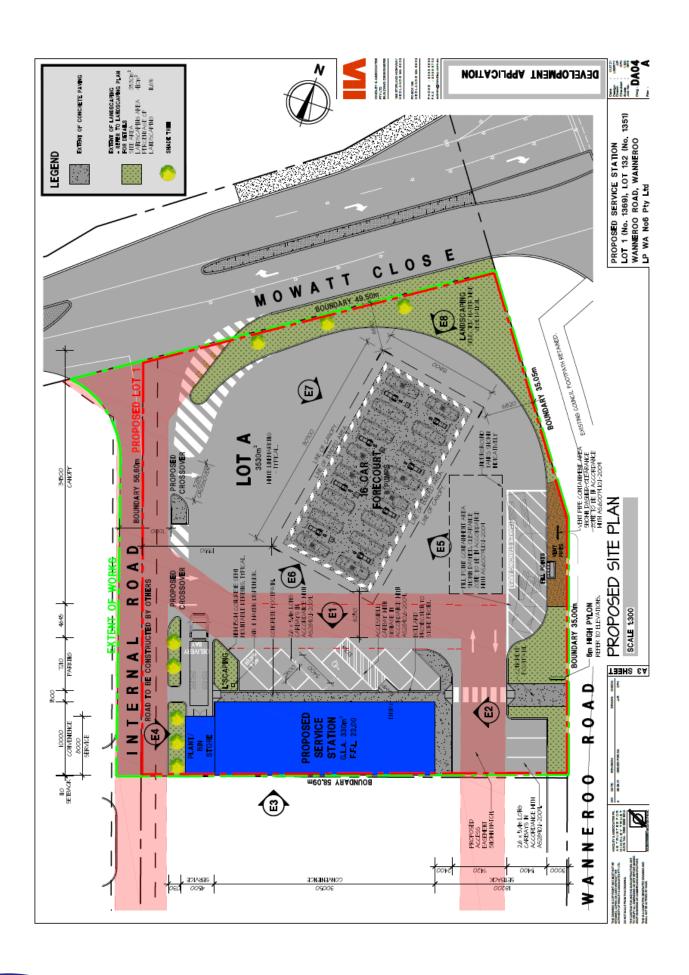
In conclusion, the findings of this Transport Impact Assessment are supportive of the proposed development.

Appendix A

ENDORSE DETAIL AREA PLAN

Appendix B

PROPOSED ORIGINAL SITE PLAN



Appendix C

DEVELOPMENT SITE PLAN

Appendix D

SIDRA OUTPUTS

Site: 1 [Clarkson Ave & Wanneroo Rd - 2021 - AM]

Wanneroo Rd/ Clarkson Ave

Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 150 seconds (Site Practical Cycle Time)

Mo	vemen	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles [Rate	Cycles	Speed km/h
Sou	th: Wan	neroo (S)												
1	L2	58	3.9	58	3.9	0.050	11.8	LOS B	1.1	8.3	0.31	0.65	0.31	48.7
2	T1	811	9.7	811	9.7	0.603	25.8	LOS C	19.1	158.1	0.84	0.73	0.84	46.9
3	R2	71	4.1	71	4.1	0.289	39.4	LOS D	2.5	19.9	0.93	0.76	0.93	37.4
App	roach	939	8.9	939	8.9	0.603	25.9	LOS C	19.1	158.1	0.81	0.73	0.81	46.0
East	t: Clarks	on Ave (E))											
4	L2	154	4.1	154	4.1	0.148	14.4	LOS B	4.0	31.4	0.41	0.65	0.41	49.5
5	T1	7	6.1	7	6.1	0.148	8.8	LOSA	4.0	31.4	0.41	0.65	0.41	41.3
6	R2	182	3.9	182	3.9	0.742	75.6	LOS E	13.4	103.7	1.00	0.86	1.08	27.0
Арр	roach	343	4.1	343	4.1	0.742	46.8	LOS D	13.4	103.7	0.72	0.76	0.76	34.2
Nort	h: Wani	neroo (N)												
7	L2	217	4.3	217	4.3	0.145	6.8	LOSA	0.3	2.2	0.03	0.59	0.03	56.8
8	T1	1026	10.3	1026	10.3	0.876	48.9	LOS D	37.0	306.2	0.89	0.87	0.99	36.2
9	R2	58	4.1	58	4.1	0.414	46.0	LOS D	2.5	19.6	0.97	0.75	0.97	25.7
App	roach	1301	9.1	1301	9.1	0.876	41.8	LOS D	37.0	306.2	0.75	0.82	0.83	38.2
Wes	t: Interr	al Rd (W)												
10	L2	58	4.1	58	4.1	0.067	13.4	LOS B	1.4	11.1	0.40	0.64	0.40	44.4
11	T1	4	3.7	4	3.7	0.126	61.2	LOS E	2.0	15.6	0.91	0.72	0.91	20.9
12	R2	58	3.8	58	3.8	0.126	65.6	LOS E	2.0	15.6	0.91	0.72	0.91	21.0
Арр	roach	120	3.9	120	3.9	0.126	40.3	LOS D	2.0	15.6	0.67	0.68	0.67	28.2
All \	/ehicles	2703	8.2	2703	8.2	0.876	36.8	LOSD	37.0	306.2	0.76	0.77	0.81	39.6

V Site: v [Internal Rd & Access 1 & Access 2 - 2021 - AM]

Site Category: (None) Giveway / Yield (Two-Way)

Mov	ement	Performa	ance	- Vehi	cles									
Mov ID		Demand I				Deg. Satn	Average Delay	Level of Service	95% Back Queue		Prop. Queued	Effective Stop	Aver. / No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis veh	tance m		Rate	Cycles S	Speed km/h
Sout	h: Sout	h Access (S		701111	- /-	,,,	555		70.1					
1	L2	1	4.0	1	4.0	0.064	5.6	LOSA	0.3	2.0	0.19	0.57	0.19	52.5
2	T1	1	4.0	1	4.0	0.064	5.4	LOSA	0.3	2.0	0.19	0.57	0.19	53.0
3	R2	53	4.0	53	4.0	0.064	6.8	LOSA	0.3	2.0	0.19	0.57	0.19	49.4
Appr	oach	55	4.0	55	4.0	0.064	6.8	LOSA	0.3	2.0	0.19	0.57	0.19	49.6
East	: Interna	al Rd (E)												
4	L2	53	4.0	53	4.0	0.030	4.3	LOSA	0.0	0.0	0.00	0.52	0.00	51.1
5	T1	4	4.0	4	4.0	0.030	0.0	LOSA	0.0	0.0	0.00	0.52	0.00	53.8
6	R2	68	4.0	68	4.0	0.039	4.3	LOSA	0.2	1.2	0.03	0.55	0.03	50.2
Appr	oach	125	4.0	125	4.0	0.039	4.2	NA	0.2	1.2	0.02	0.54	0.02	50.7
Nort	h: North	Access (N	l)											
7	L2	66	4.0	66	4.0	0.044	5.6	LOSA	0.2	1.4	0.02	0.56	0.02	50.8
8	T1	1	4.0	1	4.0	0.044	5.5	LOSA	0.2	1.4	0.02	0.56	0.02	53.9
9	R2	1	4.0	1	4.0	0.044	6.1	LOSA	0.2	1.4	0.02	0.56	0.02	53.1
Appr	oach	68	4.0	68	4.0	0.044	5.6	LOSA	0.2	1.4	0.02	0.56	0.02	50.9
Wes	t: Intern	al Rd (W)												
10	L2	1	4.0	1	4.0	0.003	5.7	LOSA	0.0	0.1	0.07	0.19	0.07	56.2
11	T1	4	4.0	4	4.0	0.003	0.0	LOSA	0.0	0.1	0.07	0.19	0.07	56.1
12	R2	1	4.0	1	4.0	0.003	5.7	LOSA	0.0	0.1	0.07	0.19	0.07	55.9
Appr	oach	6	4.0	6	4.0	0.003	1.9	NA	0.0	0.1	0.07	0.19	0.07	56.1
All V	ehicles	255	4.0	255	4.0	0.064	5.1	NA	0.3	2.0	0.06	0.54	0.06	50.7

ф Network: N101 [2021 - AM]

Wanneroo Rd/ Clarkson Ave
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 140 seconds (Site Practical Cycle Time)

Mov	ement	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand				Deg. Satn	Average Delay	Level of Service	95% Ba Que	ue	Prop. Queued	Effective Stop	No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles [veh	Distance m		Rate	Cycles	Speed km/h
Sout	h: Wan	neroo (S)	70	VOIDII	70	770	300		7011					KIIDII
1	L2	54	3.9	54	3.9	0.048	11.8	LOS B	1.0	7.5	0.33	0.65	0.33	48.6
2	T1	981	9.7	981	9.7	0.815	33.2	LOSC	26.1	215.4	0.96	0.88	1.01	42.8
3	R2	93	4.1	93	4.1	0.354	37.0	LOS D	3.1	24.4	0.94	0.77	0.94	38.3
Appr	oach	1127	9.0	1127	9.0	0.815	32.5	LOS C	26.1	215.4	0.93	0.86	0.97	42.5
East	Clarks	on Ave (E))											
4	L2	106	4.1	106	4.1	0.093	9.3	LOSA	1.7	13.2	0.29	0.60	0.29	53.2
5	T1	7	6.1	7	6.1	0.093	3.6	LOSA	1.7	13.2	0.29	0.60	0.29	46.7
6	R2	166	3.9	166	3.9	0.632	67.0	LOS E	10.9	84.4	0.99	0.82	0.99	28.8
Appr	oach	280	4.1	280	4.1	0.632	43.4	LOS D	10.9	84.4	0.71	0.73	0.71	35.2
North	n: Wanı	neroo (N)												
7	L2	220	4.3	220	4.3	0.151	6.8	LOSA	0.3	2.3	0.03	0.59	0.03	56.8
8	T1	704	10.3	704	10.3	0.647	39.9	LOS D	18.5	153.3	0.82	0.71	0.82	39.7
9	R2	54	4.1	54	4.1	0.358	44.2	LOS D	2.3	18.1	0.96	0.74	0.96	26.4
Appr	oach	978	8.6	978	8.6	0.647	32.7	LOSC	18.5	153.3	0.65	0.69	0.65	42.0
West	: Intern	al Rd (W)												
10	L2	54	4.1	54	4.1	0.064	16.1	LOS B	1.5	11.3	0.47	0.65	0.47	42.0
11	T1	5	3.7	5	3.7	0.112	55.7	LOS E	1.8	13.7	0.90	0.71	0.90	22.2
12	R2	54	3.8	54	3.8	0.112	60.1	LOS E	1.8	13.7	0.90	0.71	0.90	22.3
Appr	oach	113	3.9	113	3.9	0.112	38.9	LOS D	1.8	13.7	0.69	0.68	0.69	28.7
All V	ehicles	2498	8.1	2498	8.1	0.815	34.1	LOSC	26.1	215.4	0.78	0.77	0.80	40.8

V Site: v [Internal Rd & Access 1 & Access 2 - 2021 - PM]

Site Category: (None) Giveway / Yield (Two-Way)

Mov	ement	t Performa	ance	- Vehi	cles									
Mov ID	Turn	Demand F	Flows	Arrival		Deg. Satn	Average Delay	Level of Service	95% Bac Queue		Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles Dis	stance m		Rate	Cycles	Speed km/h
Sout	h: Sout	h Access (S		VOIDII	70	W.C.	300		7011	- "				KIIDII
1	L2	2	4.0	2	4.0	0.063	5.6	LOSA	0.3	2.0	0.09	0.56	0.09	52.6
2	T1	5	4.0	5	4.0	0.063	5.3	LOSA	0.3	2.0	0.09	0.56	0.09	53.1
3	R2	47	4.0	47	4.0	0.063	6.8	LOSA	0.3	2.0	0.09	0.56	0.09	49.5
Appr	oach	55	4.0	55	4.0	0.063	6.6	LOSA	0.3	2.0	0.09	0.56	0.09	50.3
East:	Intern	al Rd (E)												
4	L2	47	4.0	47	4.0	0.026	4.3	LOSA	0.0	0.0	0.00	0.54	0.00	50.9
5	T1	2	4.0	2	4.0	0.026	0.0	LOSA	0.0	0.0	0.00	0.54	0.00	53.6
6	R2	65	4.0	65	4.0	0.038	4.3	LOSA	0.1	1.1	0.03	0.55	0.03	50.2
Appr	oach	115	4.0	115	4.0	0.038	4.2	NA	0.1	1.1	0.02	0.54	0.02	50.6
North	n: North	Access (N	l)											
7	L2	66	4.0	66	4.0	0.048	5.6	LOSA	0.2	1.5	0.03	0.56	0.03	50.8
8	T1	5	4.0	5	4.0	0.048	5.5	LOSA	0.2	1.5	0.03	0.56	0.03	53.9
9	R2	1	4.0	1	4.0	0.048	6.1	LOSA	0.2	1.5	0.03	0.56	0.03	53.1
Appr	oach	73	4.0	73	4.0	0.048	5.6	LOSA	0.2	1.5	0.03	0.56	0.03	51.3
West	t: Intern	al Rd (W)												
10	L2	1	4.0	1	4.0	0.004	5.7	LOSA	0.0	0.1	0.08	0.21	0.08	55.9
11	T1	5	4.0	5	4.0	0.004	0.1	LOSA	0.0	0.1	0.08	0.21	0.08	55.6
12	R2	2	4.0	2	4.0	0.004	5.7	LOSA	0.0	0.1	0.08	0.21	0.08	55.7
Appr	oach	8	4.0	8	4.0	0.004	2.2	NA	0.0	0.1	0.08	0.21	0.08	55.7
All Ve	ehicles	251	4.0	251	4.0	0.063	5.1	NA	0.3	2.0	0.04	0.54	0.04	50.9

++ Network: N101 [2021 - PM]

Site: 1 [Clarkson Ave & Wanneroo Rd - 2031 - AM]

Wanneroo Rd/ Clarkson Ave

Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 150 seconds (Site Practical Cycle Time)

Movement Performance - Vehicles														
Mov ID	Turn	Demand	Flows	Arrival		Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles [veh	istance) m		Rate	Cycles	Speed km/h
Sout	h: Wan	neroo (S)	70	VEIDII	70	V/C	300		VCII	- "				KIIVII
1	L2	56	3.9	56	3.9	0.048	11.8	LOS B	1.0	8.0	0.31	0.65	0.31	48.7
2	T1	1007	9.7	1007	9.7	0.755	27.8	LOSC	25.5	210.6	0.90	0.80	0.90	45.7
3	R2	86	4.1	86	4.1	0.354	39.8	LOS D	3.2	24.6	0.95	0.77	0.95	37.2
Appr	oach	1149	9.0	1149	9.0	0.755	28.0	LOS C	25.5	210.6	0.88	0.79	0.88	45.0
East	: Clarks	on Ave (E))											
4	L2	187	4.1	187	4.1	0.263	24.0	LOSC	7.8	60.6	0.59	0.71	0.59	43.9
5	T1	17	6.1	17	6.1	0.263	18.3	LOS B	7.8	60.6	0.59	0.71	0.59	34.3
6	R2	222	3.9	222	3.9	0.904	89.7	LOSF	18.5	143.4	1.00	0.97	1.32	24.5
Appr	oach	426	4.1	426	4.1	0.904	58.0	LOS E	18.5	143.4	0.80	0.85	0.97	30.8
North	h: Wanı	neroo (N)												
7	L2	264	4.3	264	4.3	0.180	6.8	LOSA	0.4	3.0	0.03	0.60	0.03	56.8
8	T1	1271	10.3	1271	10.3	1.099	161.9	LOS F	87.2	721.0	1.00	1.52	1.78	16.8
9	R2	56	4.1	56	4.1	0.399	45.9	LOS D	2.4	18.9	0.97	0.74	0.97	25.7
Appr	oach	1591	9.1	1591	9.1	1.099	132.0	LOSF	87.2	721.0	0.84	1.34	1.46	19.2
Wes	t: Intern	al Rd (W)												
10	L2	56	4.1	56	4.1	0.071	18.8	LOS B	1.7	13.5	0.50	0.66	0.50	39.9
11	T1	17	3.7	17	3.7	0.146	61.4	LOS E	2.4	18.4	0.91	0.71	0.91	21.2
12	R2	56	3.8	56	3.8	0.146	65.8	LOS E	2.4	18.4	0.91	0.72	0.91	21.1
Appr	oach	128	3.9	128	3.9	0.146	44.8	LOS D	2.4	18.4	0.73	0.69	0.73	26.6
All V	ehicles	3295	8.2	3295	8.2	1.099	82.7	LOS F	87.2	721.0	0.84	1.06	1.17	25.9

ф Network: N101 [2031 - AM]

V Site: v [Internal Rd & Access 1 & Access 2 - 2031 - AM]

Site Category: (None) Giveway / Yield (Two-Way)

Mov	emen	Performa	ance	- Vehi	cles									
Mov ID	Turn	Total	HV	Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back Queue Vehicles Dis	tance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
Sout	h: Sout	veh/h h Access (S		veh/h	%	v/c	sec		veh	m				km/h
1	11. 50ut	1	4.0	1	4.0	0.064	5.6	LOSA	0.3	2.0	0.21	0.57	0.21	52.5
2	T1	1	4.0	1	4.0	0.064	5.4	LOSA	0.3	2.0	0.21	0.57	0.21	53.0
3	R2	53	4.0	53	4.0	0.064	6.8	LOSA	0.3	2.0	0.21	0.57	0.21	49.4
	roach	55 55	4.0	55	4.0	0.064	6.8	LOSA	0.3	2.0	0.21	0.57	0.21	49.6
Appi	Oacii	55	4.0	55	4.0	0.004	0.0	LOSA	0.5	2.0	0.21	0.57	0.21	45.0
East		al Rd (E)												
4	L2	53	4.0	53	4.0	0.030	4.3	LOSA	0.0	0.0	0.00	0.51	0.00	51.2
5	T1	5	4.0	5	4.0	0.030	0.0	LOSA	0.0	0.0	0.00	0.51	0.00	53.9
6	R2	66	4.0	66	4.0	0.038	4.3	LOSA	0.1	1.1	0.03	0.55	0.03	50.2
Appr	oach	124	4.0	124	4.0	0.038	4.1	NA	0.1	1.1	0.02	0.53	0.02	50.8
Nort	h: North	Access (N	l)											
7	L2	66	4.0	66	4.0	0.044	5.6	LOSA	0.2	1.4	0.03	0.56	0.03	50.7
8	T1	1	4.0	1	4.0	0.044	5.5	LOSA	0.2	1.4	0.03	0.56	0.03	53.8
9	R2	1	4.0	1	4.0	0.044	6.1	LOSA	0.2	1.4	0.03	0.56	0.03	53.1
Appr	oach	68	4.0	68	4.0	0.044	5.6	LOSA	0.2	1.4	0.03	0.56	0.03	50.9
Wes	t: Intern	al Rd (W)												
10	L2	1	4.0	1	4.0	0.004	5.7	LOSA	0.0	0.1	0.06	0.16	0.06	56.4
11	T1	5	4.0	5	4.0	0.004	0.0	LOSA	0.0	0.1	0.06	0.16	0.06	56.6
12	R2	1	4.0	1	4.0	0.004	5.7	LOSA	0.0	0.1	0.06	0.16	0.06	56.2
Appr	roach	7	4.0	7	4.0	0.004	1.7	NA	0.0	0.1	0.06	0.16	0.06	56.5
All V	ehicles	255	4.0	255	4.0	0.064	5.0	NA	0.3	2.0	0.06	0.54	0.06	50.7

‡ Network: N101 [2031 - AM]

Wanneroo Rd/ Clarkson Ave

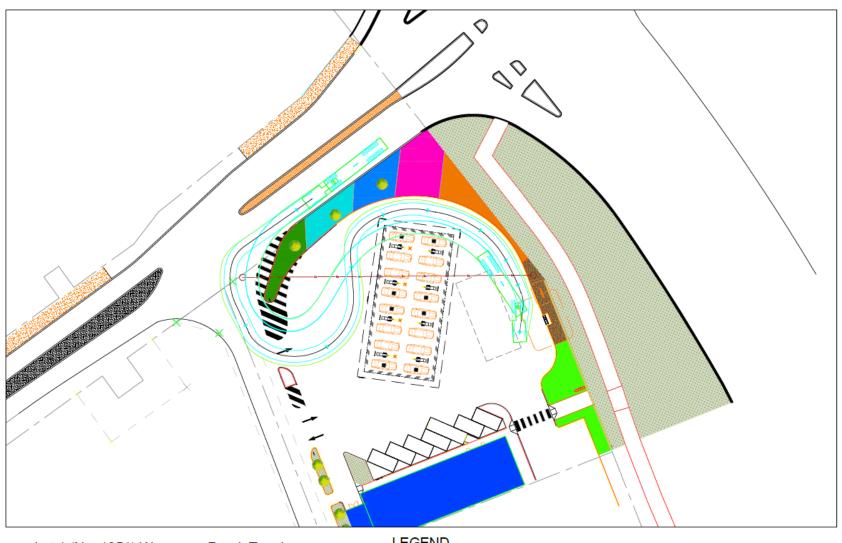
Site Category: (None)
Signals - Fixed Time Coordinated Cycle Time = 165 seconds (Site Practical Cycle Time)

Mov	Movement Performance - Vehicles													
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg. Satn	Average Delay	Level of Service	95% Ba Que		Prop. Queued	Effective Stop	Aver. No.	Averag e
		Total veh/h		Total veh/h	HV %	v/c	sec		Vehicles I veh	Distance m		Rate	Cycles	Speed km/h
Sout	h: Wan	neroo (S)	70	VCIVII	/0	W.C	300		VCII	- "				KIIDII
1	L2	288	3.9	288	3.9	0.236	14.2	LOS B	7.3	56.8	0.39	0.69	0.39	45.8
2	T1	1213	9.7	1213	9.7	0.930	52.7	LOS D	46.4	383.1	0.95	0.99	1.14	34.9
3	R2	113	4.1	113	4.1	0.444	43.4	LOS D	4.9	38.4	0.96	0.78	0.96	35.9
Appr	oach	1614	8.3	1614	8.3	0.930	45.1	LOS D	46.4	383.1	0.85	0.92	0.99	35.8
East	: Clarks	son Ave (E))											
4	L2	129	4.1	129	4.1	0.311	26.8	LOSC	5.9	46.5	0.77	0.73	0.77	43.2
5	T1	55	6.1	55	6.1	0.311	21.1	LOSC	5.9	46.5	0.77	0.73	0.77	33.4
6	R2	203	3.9	203	3.9	0.910	98.9	LOSF	18.6	143.9	1.00	0.97	1.32	23.0
Appr	oach	387	4.3	387	4.3	0.910	63.8	LOS E	18.6	143.9	0.89	0.86	1.06	28.5
Nort	h: Wani	neroo (N)												
7	L2	268	4.3	268	4.3	0.189	6.9	LOSA	0.5	4.0	0.03	0.60	0.03	56.7
8	T1	875	10.3	875	10.3	0.736	35.1	LOS D	23.7	196.3	0.73	0.64	0.73	41.9
9	R2	158	4.1	158	4.1	0.877	56.5	LOS E	8.1	63.1	1.00	0.89	1.23	22.5
Appr	oach	1301	8.3	1301	8.3	0.877	31.9	LOS C	23.7	196.3	0.62	0.66	0.65	41.9
Wes	t: Interr	nal Rd (W)												
10	L2	223	4.1	223	4.1	0.306	28.6	LOSC	10.1	78.9	0.65	0.74	0.65	33.6
11	T1	55	3.7	55	3.7	0.617	74.7	LOS E	10.9	84.5	1.00	0.81	1.00	18.6
12	R2	223	3.8	223	3.8	0.617	79.2	LOS E	10.9	84.5	1.00	0.81	1.00	18.6
Appr	oach	501	3.9	501	3.9	0.617	56.1	LOS E	10.9	84.5	0.84	0.78	0.84	23.2
All V	ehicles	3803	7.3	3803	7.3	0.930	44.0	LOSD	46.4	383.1	0.77	0.81	0.86	35.1

V Site: v [Internal Rd & Access 1 & Access 2 - 2031 - PM]

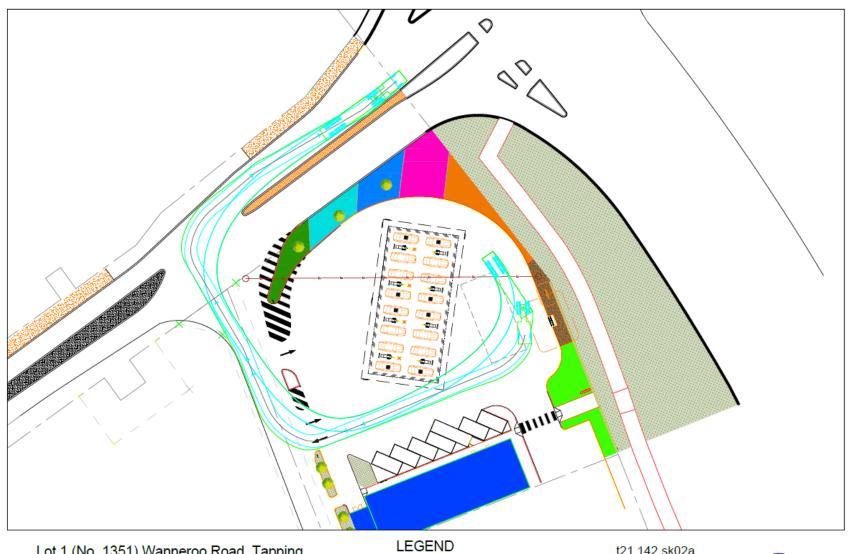
Site Category: (None) Giveway / Yield (Two-Way)

Mov	/emen	Perform	ance	- Vehi	cles									
Mov ID	Turn	Demand	Flows	Arrival	Flows	Deg.	Average		95% Ba Que		Prop. Queued	Effective	Aver. No.	Averag
טו		Total	HV	Total	HV	Satn	Delay	Service	Vehicles [Queuea	Stop Rate	Cycles	e Speed
		veh/h		veh/h	%	v/c	sec		veh	m			- Jy 5.55	km/h
Sout	h: Sout	h Access (S)											
1	L2	2	4.0	2	4.0	0.678	15.5	LOS C	2.8	21.4	0.77	1.11	1.47	41.8
2	T1	5	4.0	5	4.0	0.678	20.7	LOS C	2.8	21.4	0.77	1.11	1.47	42.1
3	R2	149	4.0	149	4.0	0.678	24.9	LOS C	2.8	21.4	0.77	1.11	1.47	33.5
Appr	oach	157	4.0	157	4.0	0.678	24.7	LOSC	2.8	21.4	0.77	1.11	1.47	34.1
East	: Intern	al Rd (E)												
4	L2	149	4.0	149	4.0	0.220	4.3	LOSA	0.0	0.0	0.00	0.20	0.00	54.4
5	T1	281	4.0	281	4.0	0.220	0.0	LOSA	0.0	0.0	0.00	0.20	0.00	57.4
6	R2	65	4.0	65	4.0	0.049	5.3	LOSA	0.2	1.4	0.30	0.58	0.30	49.1
Appr	roach	496	4.0	496	4.0	0.220	2.0	NA	0.2	1.4	0.04	0.25	0.04	55.3
Nort	h: North	Access (N	N)											
7	L2	65	4.0	65	4.0	0.107	6.6	LOSA	0.3	2.2	0.40	0.62	0.40	48.7
8	T1	5	4.0	5	4.0	0.107	12.2	LOS B	0.3	2.2	0.40	0.62	0.40	52.7
9	R2	2	4.0	2	4.0	0.107	12.1	LOS B	0.3	2.2	0.40	0.62	0.40	51.9
Appr	roach	73	4.0	73	4.0	0.107	7.2	LOSA	0.3	2.2	0.40	0.62	0.40	49.4
Wes	t: Intern	al Rd (W)												
10	L2	2	4.0	2	4.0	0.224	6.9	LOSA	0.0	0.3	0.01	0.01	0.01	57.9
11	T1	281	4.0	281	4.0	0.224	0.0	LOSA	0.0	0.3	0.01	0.01	0.01	59.7
12	R2	2	4.0	2	4.0	0.224	7.6	LOSA	0.0	0.3	0.01	0.01	0.01	57.7
Appr	roach	285	4.0	285	4.0	0.224	0.1	NA	0.0	0.3	0.01	0.01	0.01	59.7
All V	ehicles/	1011	4.0	1011	4.0	0.678	5.4	NA	2.8	21.4	0.17	0.34	0.28	51.0


💠 Network: N102 [2031 - PM]

Appendix E

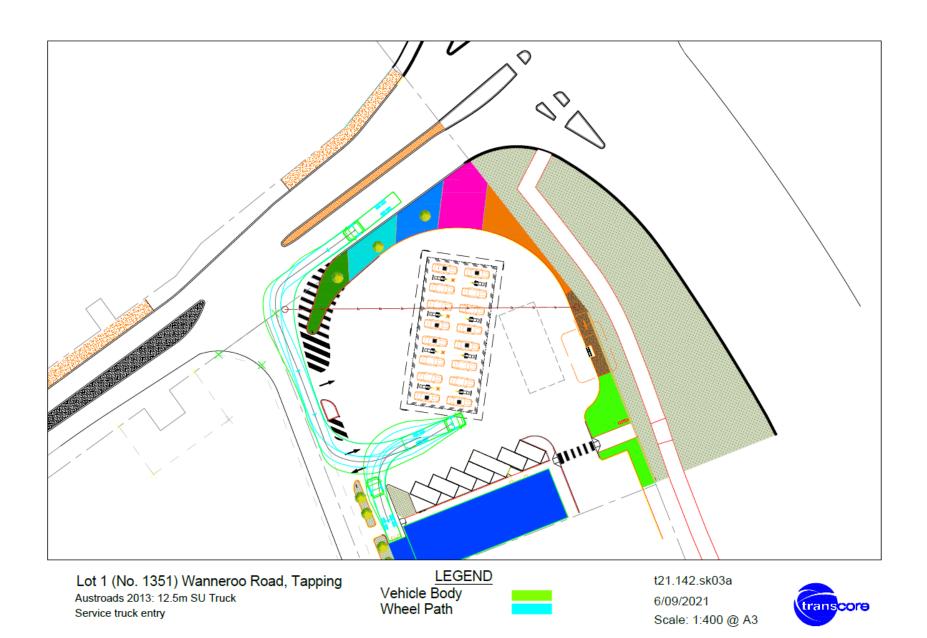
TURN PATH ANALYSIS

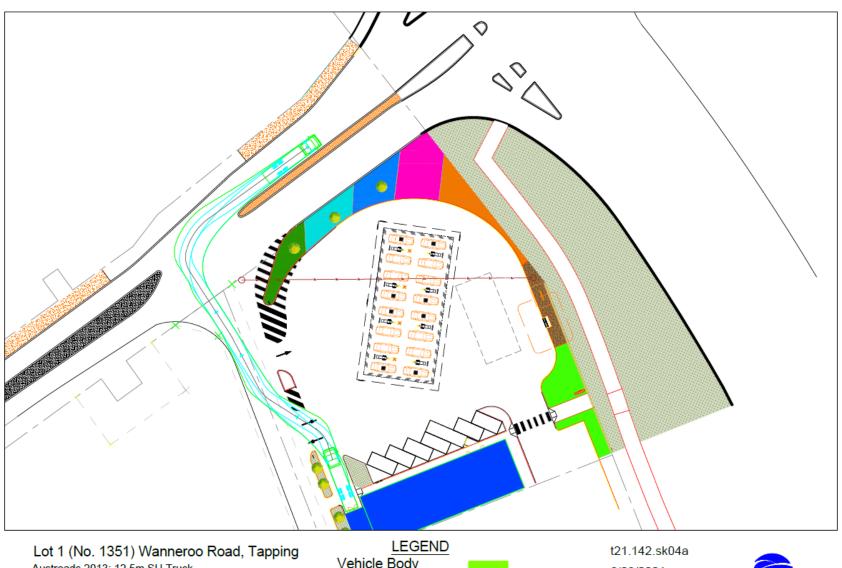


Lot 1 (No. 1351) Wanneroo Road, Tapping Austroads 2013: 19.0m Semi-Trailer Fuel tanker entry

LEGEND
Vehicle Body
Wheel Path

t21.142.sk01a 6/09/2021 Scale: 1:400 @ A3





Lot 1 (No. 1351) Wanneroo Road, Tapping Austroads 2013: 19.0m Semi-Trailer Fuel tanker exit

Vehicle Body Wheel Path t21.142.sk02a 6/09/2021 Scale: 1:400 @ A3

Austroads 2013: 12.5m SU Truck Service truck exit

LEGEND Vehicle Body Wheel Path

6/09/2021 Scale: 1:400 @ A3

