Design for a better future /

50 ALEXANDRIA VIEW, MINDARIE

STORMWATER CONCEPT

1150

Question today Imagine tomorrow Create for the future

50 ALEXANDRIA VIEW, MINDARIE STORMWATER CONCEPT

WSP Level 5, 503 Murray Street Perth WA 6000 PO Box 7181 Cloisters Square WA 6850

Tel: +61 8 9489 9700 Fax: +61 8 9489 9777

wsp.com

REV	DATE	DETAILS
A	22/07/2022	Stormwater Concept

	NAME	DATE	SIGNATURE
Prepared by:	Hector Salgado	22/07/2022	
Reviewed by:	Seamus Corrigan	22/07/2022	
Approved by:	Seamus Corrigan	25/07/2022	

This document may contain confidential and legally privileged information, neither of which are intended to be waived, and must be used only for its intended purpose. Any unauthorised copying, dissemination or use in any form or by any means other than by the addressee, is strictly prohibited. If you have received this document in error or by any means other than as authorised addressee, please notify us immediately and we will arrange for its return to us.

TABLE OF CONTENTS

1	INTRODUCTION	2
1.1	PROPERTY SITE AND BUILDING DETAILS	2
2	STORMWATER DETENTION	4
2.1	OPTION 1 ON-SITE HIGH-LEVEL DETENTION TANK WITH INFILTRATION CAPABILITIES	4
2.2	OPTION 2 DETENTION TANK WITH ALLOWABLE DISCHARGE	5
3	GENERAL RECOMMENDATIONS FOR STORMWATER MANAGEMENT	6
APPE	NDIX A - RATIONAL METHOD CALCULATIONS	8
APPE	NDIX B – DRAWING	11

1 INTRODUCTION

WSP has been engaged by Edge Visionary Living to undertake the Civil design of the Stormwater drainage for the proposed project Lot 418, Mindarie Apartment project located at 50 Alexandria View, Mindarie, WA. This design is in accordance with the H - WD05 & WA-WD05 Stormwater drainage design standard, minimising environmental degradation and preserving the pre-development flow patterns.

The main aspect of the civil engineering work is to include for the expansion of this building's impervious area and accommodate the additional runoff.

The objectives are as follows:

- Estimate the necessary on-site detention storage volume to contain a major rainfall event at 1% AEP (100-year ARI)
- Stormwater layout including, advise an appropriate location for the stormwater detention tank.
- General recommendations for stormwater management.

1.1 PROPERTY SITE AND BUILDING DETAILS

The site falls within the jurisdiction of the City of Wanneroo. The existing site is cleared with no drainage offsite discharge point noted. However, overland flow from the cleared lot is likely being collected at the south of the site at Alexandria View.

Figure 1.1 Site Location

The site falls from a high of approximately RL 15.0m AHD towards the North of the site and grades down to approximately RL 12.0m AHD at the South-west corner of the site. The site is graded into a primary stormwater catchment which is grading toward a piped CoW existing stormwater network, towards the western corner of the site.

The property site details are provided in Table 1.1 below:

Table 1.1 Property Site Details

Building Name	TBC
Lot & Plan Number	Lot 418
Proposed Development	Residential
Local Authority	City of Wanneroo
WSP Ref	PP139922
Lot Area	3923 m ²

2 STORMWATER DETENTION

The CoW stormwater guidelines requires to manage stormwater flows resulting from development works to be similar to the pre-development flow, and to provide effective stormwater systems to adequately manage small, minor and major storm events.

From a review of the Perth Ground Water Mapping System, the ground conditions have a surface geology type of Safety Bay Sand and groundwater table and ground level. From a review of the Australian Rainfall Runoff hub, we can find the predicted storm loss values.

Base on the available information two high level stormwater detention options are proposed to manage the stormwater runoff from the site as follows:

- Option 1 On-site High-Level detention tank with infiltration capabilities.
- Option 2 High-Level Detention Tank with allowable discharge to local authorities' drainage

2.1 OPTION 1 ON-SITE HIGH-LEVEL DETENTION TANK WITH INFILTRATION CAPABILITIES

Option 1 drainage arrangement can be found in Appendix B. The anticipated lot's hydraulic conductivity allows for a concentration tank with infiltration capabilities, infiltration rates should be confirmed via geotechnical permeability tests. The City of Wanneroo accepts infiltration for stormwater management volumes.

Option 1 consists of the following internal stormwater management system for Lot 418:

- Stormwater is collected within Lot 418 (within the title boundary) and conveyed via downpipes to the Basement Level (see Appendix B markup) where the stormwater drains to an infiltration tank.
- The stormwater infiltration tank (with a storage capacity of 136 m3) is sized for the 1 in 100-year (1% AEP) storm of 2-hour duration. Refer to Appendix A for stormwater calculations.
- Using a product such as EcoBloc Maxx as the infiltration device offers a cost-effective solution for the project.

Table 2.1 Groundwater Separation

	DEPTH
Natural Surface	15m AHD
Water Table	1m AHD
Basement Level	9m AHD
Separation	6.7m AHD

Table 2.2 Mindarie Apartment anticipated infiltration and tank size

TYPE	RATE
Infiltration Rate	5 m/day
Infiltration Area	200.5 m ²
Total Infiltration	11.61 L/s
Total Tank Size	136 m³

2.2 OPTION 2 DETENTION TANK WITH ALLOWABLE DISCHARGE

To determine the attenuation requirements for the increased stormwater runoff from the pre and post-developed site. WSP calculated the pre-development flows for the 5% AEP event to be 29.51/s and used this value as an allowable discharge rate, we then calculated the 1% AEP storage attenuated volume for the post development site. A stormwater attenuation tank of 75m3 is proposed and modelled to confirm that the resultant post-development flows are no greater than the established pre-development flows for the 5% AEP event and meet the requirements of Stormwater Drainage Design for the City of Wanneroo WD5.

Using the site details listed within Table 2.3 gives us the following requirements for 50 Alexandria View, Mindarie:

Table 2.3 Mindarie Apartment Requirements

TYPE	RATE	STORM EVENT	
Discharge Rate	29.5 L/s	5% AEP (Pre-Development)	
Total Tank Size	75.15 m ³	100% AEP (Post-Development)	

Furthermore, the discharge rate from the stormwater tank's base level outlet is proposed to be restricted via an orifice plate or similar flow restrictor to the required 29.5 L/s discharge.

Refer to Appendix A for stormwater calculations.

3 GENERAL RECOMMENDATIONS FOR STORMWATER MANAGEMENT

It is expected that the construction phase works will comprise of:

- Clearing
- Bulk Earthworks
- Trimming and Profiling
- Site Drainage & Services construction
- Landscaping and associated drainage

To prevent the infiltration of litter, sediments and other pollutants from entering the stormwater system, various sediment management measures can be utilised on site to provide drainage structure protection. As drainage is constructed on-site, any inlets into the system should be protected. The following measures are compatible with a development of this nature and may be implemented on-site during construction works to prevent polluting the stormwater system:

- Erosion controls such as silt fences surrounding stripped earth
- Drain Wardens traps sediment on silt fence material, which is laid under and held in place by the grate, as runoff flows through it into the stormwater system
- Sediment fences surrounding stockpiles of soil and debris
- Construction of perimeter bunding at the toe and/or top of earthworks batters (gravel sausages and RockLogs)
- The containment of runoff from the site into a temporary sediment basin during the construction works

During the construction phase, the contractor's responsibility remains to maintain and monitor erosion and sediment control measures. If during the construction phase it is deemed required, monitoring will also be undertaken by qualified consultants to determine the impact of activities on the subject site.

Drainage assets should generally be inspected every three months, with higher maintenance levels required within the first two years after construction. Drainage assets should be inspected while stormwater flows through the system to identify and fix any observed problems. The maintenance schedule below is suggested as a guide:

Component	Key Activities	Frequency
Gutters	Will need cleaning as well as inspection. If the inspection finds large amounts of leaf material or other debris, then the inspection and cleaning frequency may need to be increased.	6 months
Roof	Check for the presence of accumulated debris, including leaf and other plant material. Accumulated material should be cleaned. If tree growth has lead to overhanging branches these should be pruned.	6 months
Tank Inlets, Insect-Proofing and Leaf Filters	If necessary, these should be cleaned and repaired.	6 months

Tank and Tank Roof	Check structural integrity of the tank including the roof and access cover. Any holes or gaps should be repaired.	6 months
Internal Inspection		
	In addition to 6 monthly inspections, tanks should be inspected every 2-3 years for the presence of accumulated sediments. If the bottom of the tank is covered with sediment the tanks should be cleaned.	2-3 Years
Pipework	Pipework Check for structural integrity. Sections of pipework that are not self-draining should be drained. Buried pipework, such as with 'wet systems', can be difficult to drain or flush. Where possible drainage points should be fitted.	

APPENDIX A – RATIONAL METHOD CALCULATIONS

Hydrological Catchment Analysis - 2.0 Pre Develop EIA 20 Year

	Catchment Characteris	stics		Calculation of Averag	e Slope			
				(Taylor-Schwarz Metho	d)			
Area	A	km²	0.00393	elevation	distance	slope		li/Si^0.5
Direct length	L_d	km	0.50000	(m)	(m)	(m/m)		
Stream length	L	km	0.50000	10.5	0			
Average slope	S _a	m/m	0.04479	14.8	96		0.045	454
Height difference	Н	m	4.30000					
	Time of Concentration	on						
Ramser-Kirpich Eq.	Tc ₁	min	7.72					
Bransby Williams Eq.	Tc ₂	min	32.35					
U.S. Soil Con. Service.	Tc₃	min	14.56					
	Ave.	min	18.21					
	Use	min	18.21					
•		•	·		Average slope (S _a)			0.0448
					S _a as %			4.48

Rational M	lethod	Q=ciA		
Design Event (ARI)		20	from ARR Northern and	
Time of Concentration (Tc)		18.21	Western Region, arid to semi arid zone, vegetation assumed to be thin C value	
Area (A)		0.0039	recommended for undulating steep slopes = 2% to 4% is	
Runoff Coefficent C		0.30	betw een 0.6 and 0.8	

•

Storm Duration (min)	Rainfall intensity (i in mm/hr)	Flow Rate (Q m ³ /s)	Flow Rate (L/s)	Allowable Discharge Off-site (L/s)	Attenuated flow required to be stored (L/s)	Storage required (m3)
1	210	0.07	68.71		68.71	4.1223
2	178	0.06	58.24		58.24	6.98828
3	161	0.05	52.67		52.67	9.48129
4	147	0.05	48.09		48.09	11.54244
5	136	0.04	44.49		44.49	13.3484
10	101	0.03	33.04		33.04	19.8263
15	81.2	0.03	26.57		26.57	23.90934
20	68.8	0.02	22.51		22.51	27.01088
25	60.2	0.02	19.70		19.70	29.54315
30	53.8	0.02	17.60		17.60	31.68282
45	41.7	0.01	13.64		13.64	36.835695
60	34.7	0.01	11.35		11.35	40.86966
90	26.8	0.01	8.77		8.77	47.34756
120	22.3	0.01	7.30		7.30	52.52988
180	17.2	0.01	5.63		5.63	60.77448
270	13.3	0.00	4.35		4.35	70.49133
360	11	0.00	3.60		3.60	77.7348
540	8.4	0.00	2.75		2.75	89.04168
720	6.87	0.00	2.25		2.25	97.097832
1080	5.1	0.00	1.67		1.67	108.12204
1440	4.08	0.00	1.33		1.33	115.330176
1800	3.42	0.00	1.12		1.12	120.84228
2160	2.95	0.00	0.97		0.97	125.08236
2880	2.33	0.00	0.76		0.76	131.725152
4320	1.67	0.00	0.55		0.55	141.618672
5760	1.34	0.00	0.44		0.44	151.512192
7200	1.15	0.00	0.38	·	0.38	162.5364
8640	1.04	0.00	0.34		0.34	176.387328
10080	0.961	0.00	0.31		0.31	190.1534544

Hydrological Catchment Analysis - 3.0 Post Develop EIA 100 Year

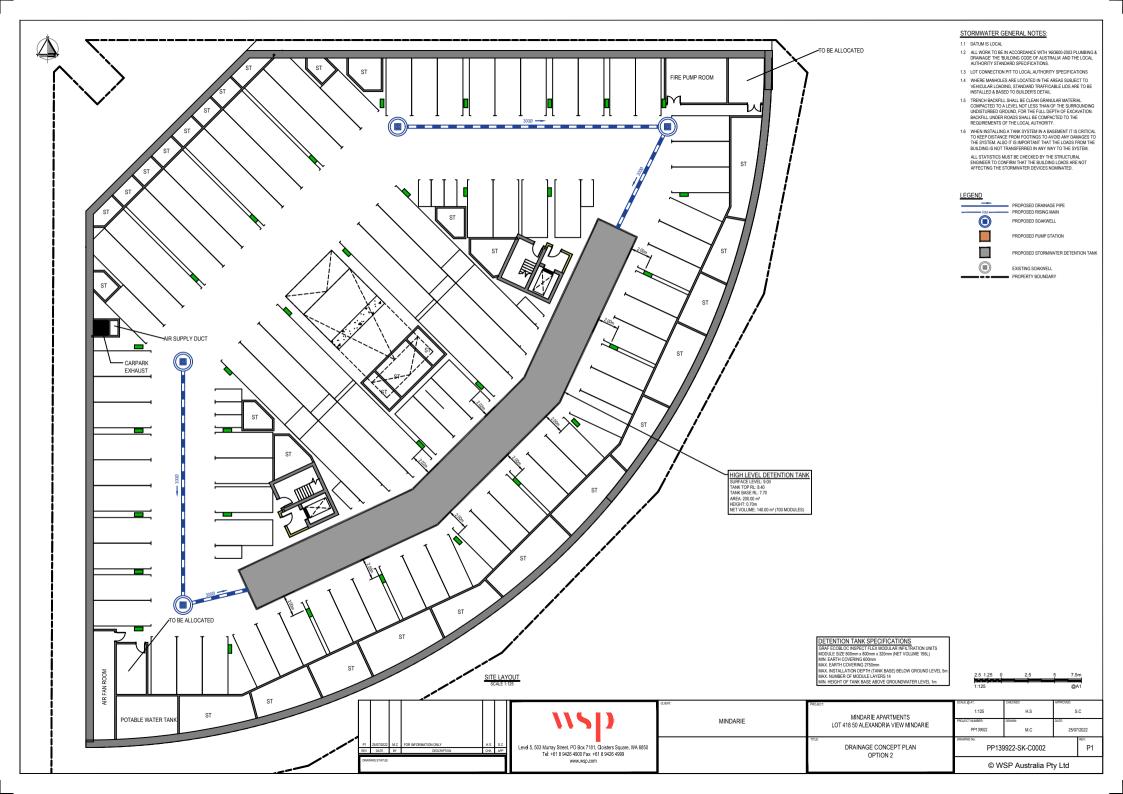
				Calculation of Average Slope				
	_			(Taylor-Schwarz Method	d)			
Area	Α	km²	0.00393	<u>elevation</u>	<u>distance</u>	slope		li/Si^0.5
Direct length	L _d	km	0.50000	(m)	(m)	(m/m)		
Stream length	L	km	0.50000	10.5	0			
Average slope	S _a	m/m	0.04479	14.8	96		0.045	454
Height difference	Н	m	4.30000					
	Time of Concentration	on						
Ramser-Kirpich Eq.	Tc ₁	min	7.72					
Bransby Williams Eq.	Tc ₂	min	32.35					
U.S. Soil Con. Service.	Tc ₃	min	14.56					
	Ave.	min	18.21					
	Use	min	18.21					
			•		Average slope (S _a)			0.0448
					S _a as %			4.48

Rational M	lethod		Q=ciA
Design Event (ARI)		100	from ARR Northern and Western Region, arid to semi
Time of Concentration (Tc)		18.21	arid zone, vegetation assumed to be thin C value
Area (A)		0.0039	recommended for undulating steep slopes = 2% to 4% is
Runoff Coefficent C		0.90	betw een 0.6 and 0.8

•

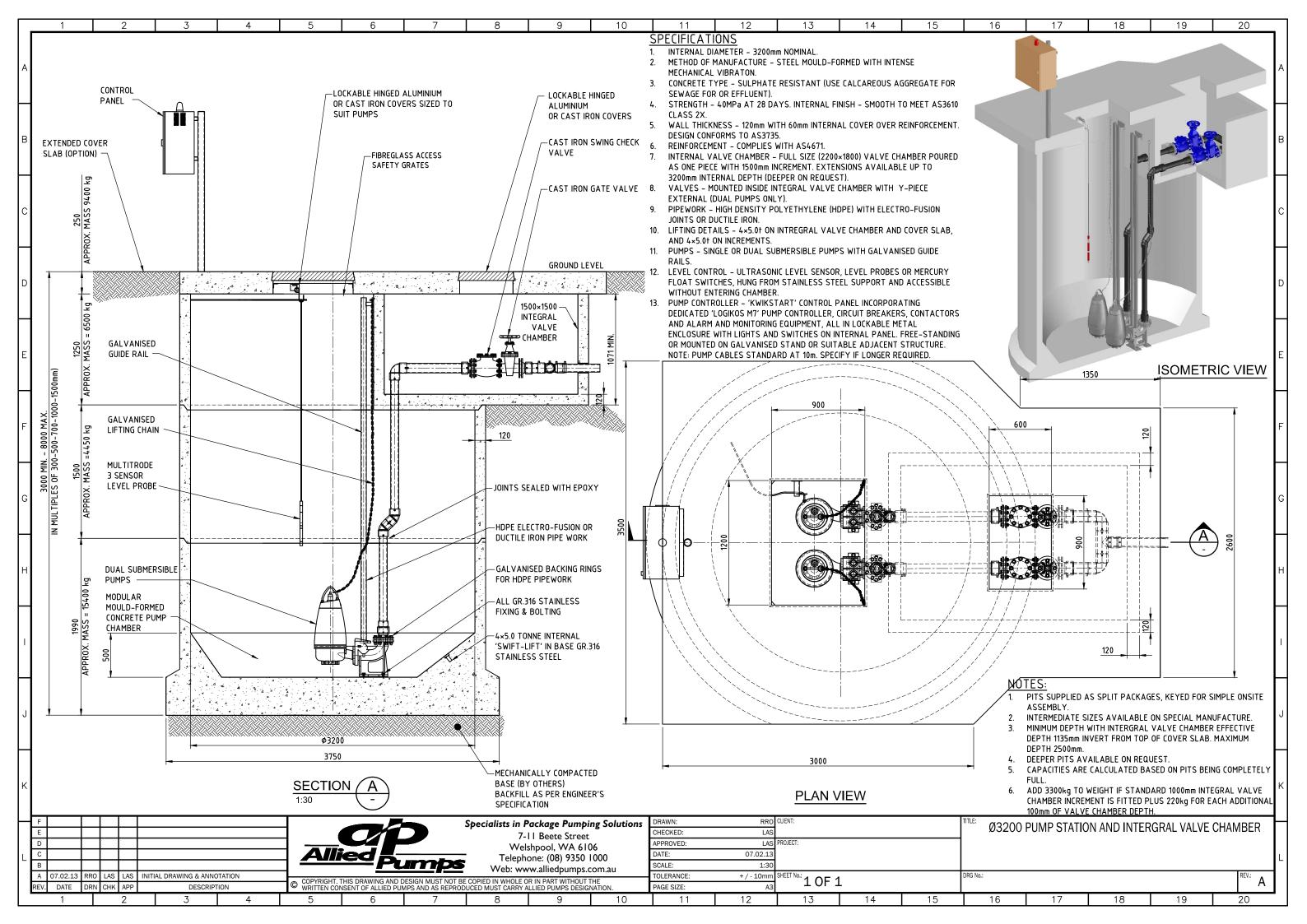
							-
				l <u></u> .	Attenuated flow		
	Rainfall intensity (i in	3		Allowable Discharge	required to be		
Storm Duration (min)	mm/hr)	Flow Rate (Q m ³ /s)	(L/s)	Off-site (L/s)	stored (L/s)	Storage required (m3)	4
1	284	0.28	278.75	29.5	249.25	14.95476	1
2	241	0.24	236.54	29.5	207.04	24.84498	
3	218	0.21	213.97	29.5	184.47	33.20406	
4	200	0.20	196.30	29.5	166.80	40.032	
5	185	0.18	181.58	29.5	152.08	45.62325	
10	136	0.13	133.48	29.5	103.98	62.3904	
15	109	0.11	106.98	29.5	77.48	69.73515	
20	92.7	0.09	90.99	29.5	61.49	73.78206	
25	81.1	0.08	79.60	29.5	50.10	75.149475	TC Discha
30	72.5	0.07	71.16	29.5	41.66	74.98575	
45	56.5	0.06	55.45	29.5	25.95	70.077825	
60	47.3	0.05	46.42	29.5	16.92	60.92982	
90	37	0.04	36.32	29.5	6.82	36.8037	
120	31.1	0.03	30.52	29.5	1.02	7.37748	
180	24.4	0.02	23.95	29.5	-5.55	-59.95512	
270	19.1	0.02	18.75	29.5	-10.75	-174.20427	
360	15.9	0.02	15.61	29.5	-13.89	-300.11364	
540	12.2	0.01	11.97	29.5	-17.53	-567.83268	
720	9.98	0.01	9.80	29.5	-19.70	-851.240016	
1080	7.34	0.01	7.20	29.5	-22.30	-1444.767192	
1440	5.8	0.01	5.69	29.5	-23.81	-2056.95072	
1800	4.78	0.00	4.69	29.5	-24.81	-2679.31044	
2160	4.07	0.00	3.99	29.5	-25.51	-3305.486232	
2880	3.13	0.00	3.07	29.5	-26.43	-4566.741984	
4320	2.17	0.00	2.13	29.5	-27.37	-7094.341584	
5760	1.71	0.00	1.68	29.5	-27.82	-9615.157056	
7200	1.45	0.00	1.42	29.5	-28.08	-12129.1884	
8640	1.3	0.00	1.28	29.5	-28.22	-14631.34752	
10080	1.21	0.00	1.19	30	-28.31	-17123.33045	

Hydrological Catchment Analysis - 4.0 Post Develop EIA 100 Year


	Catchment Characteris	stics		Calculation of Average	Slope		
				(Taylor-Schw arz Method)		
Area	A	km²	0.00393	<u>elevation</u>	distance	slope	
Direct length	L _d	km	0.50000	(m)	(m)	(m/m)	
Stream length	L	km	0.50000	10.5	0		
Average slope	S _a	m/m	0.04479	14.8	96	0	.045
Height difference	Н	m	4.30000				
	Time of Concentration	on					
Ramser-Kirpich Eq.	Tc ₁	min	7.72				
Bransby Williams Eq.	Tc ₂	min	32.35				
U.S. Soil Con. Service.	Tc ₃	min	14.56				
	Ave.	min	18.21				
	Use	min	18.21				
	_				Average slope (S _a)		
				1	S. as %		

Rational M	lethod		Q=ciA
Design Event (ARI)		100	from ARR Northern and Western Region, arid to semi
Time of Concentration (Tc)		18.21	arid zone, vegetation assumed to be thin C value
Area (A)		0.0039	recommended for undulating steep slopes = 2% to 4% is
Runoff Coefficent C		0.90	between 0.6 and 0.8

Infiltration rate used								
Infiltration Rate	•	5.78704E-05						
Infiltration Area		200.5781916	Permeability rate of 3.8 x 10^3m/s and					
Total infiltration		11.60753423	5.5 x 10^4 m/s					


Storm Duration (min)	Rainfall intensity (i in mm/hr)	Flow Rate (Q m ³ /s)	Flow Rate	Allowable Discharge Off-site (L/s)	Attenuated flow required to be stored (L/s)	Storage required (m3)
1	284	0.28	278.75	11.61	267.14	16.02830795
2	241	0.24	236.54	11.61	224.93	26.99207589
3	218	0.21	213.97	11.61	202.36	36.42470384
4	200	0.20	196.30	11.61	184.69	44.32619178
5	185	0.18	181.58	11.61	169.97	50.99098973
10	136	0.13	133.48	11.61	121.88	73.12587946
15	109	0.11	106.98	11.61	95.38	85.83836919
20	92.7	0.09	90.99	11.61	79.38	95.25301892
25	81.1	0.08	79.60	11.61	67.99	101.9881736
30	72.5	0.07	71.16	11.61	59.55	107.1921884
45	56.5	0.06	55.45	11.61	43.85	118.3874826
60	47.3	0.05	46.42	11.61	34.82	125.3426968
90	37	0.04	36.32	11.61	24.71	133.4230151
120	31.1	0.03	30.52	11.61	18.92	136.2032335
180	24.4	0.02	23.95	11.61	12.34	133.2835103
270	19.1	0.02	18.75	11.61	7.14	115.6536754
360	15.9	0.02	15.61	11.61	4.00	86.36362055
540	12.2	0.01	11.97	11.61	0.37	11.88321083
720	9.98	0.01	9.80	11.61	-1.81	-78.28549489
1080	7.34	0.01	7.20	11.61	-4.40	-285.3354103
1440	5.8	0.01	5.69	11.61	-5.91	-511.0416778
1800	4.78	0.00	4.69	11.61	-6.92	-746.9241372
2160	4.07	0.00	3.99	11.61	-7.61	-986.6226687
2880	3.13	0.00	3.07	11.61	-8.54	-1474.9239
4320	2.17	0.00	2.13	11.61	-9.48	-2456.614457
5760	1.71	0.00	1.68	11.61	-9.93	-3431.520887
7200	1.45	0.00	1.42	11.61	-10.18	-4399.643189
8640	1.3	0.00	1.28	11.61	-10.33	-5355.893267
10080	1.21	0.00	1.19	11.61	-10.42	-6301.967153

APPENDIX B – OPTION 1 DRAINAGE ARRAGEMENT

APPENDIX C – OPTION 2 DRAINAGE ARRAGEMENT

