

Noise Assessment – Childcare Centre

Lot 341 (#53) Rathmines Street, Clarkson

Reference: 23027891-01A

Prepared for: Accord Property

Reference: 23027891-01A

Lloyd George Acoustics Pty Ltd ABN: 79 125 812 544								
	PO Box 717 Hillarys WA 6923 www.lgacoustics.com.au							
Contacts	General	Daniel Lloyd	Terry George	Matt Moyle				
E:	info@lgacoustics.com.au	daniel@lgacoustics.com.au	terry@lgacoustics.com.au	matt@lgacoustics.com.au				
Ρ:	P: 9401 7770 0439 032 844 0400 414 197 0412 611							
Contacts	Contacts Rob Connolly Daryl Thompson Hao Tran Matt Nolan							
E:	rob@lgacoustics.com.au	daryl@lgacoustics.com.au	hao@lgacoustics.com.au	matt.nolan@lgacoustics.com.au				
Ρ:	0410 107 440	0420 364 650	0438 481 207	0448 912 604				

This report has been prepared in accordance with the scope of services described in the contract or agreement between Lloyd George Acoustics Pty Ltd and the Client. The report relies upon data, surveys, measurements and results taken at or under the particular times and conditions specified herein. Any findings, conclusions or recommendations only apply to the aforementioned circumstances and no greater reliance should be assumed or drawn by the Client. Furthermore, the report has been prepared solely for use by the Client, and Lloyd George Acoustics Pty Ltd accepts no responsibility for its use by other parties.

Date	Rev	Description	Author	Verified	
15-Sep-23	0	Issued to Client	Matt Nolan	Matt Moyle	
20-Sep-23	А	Minor Updates	Matt Nolan	-	

CONTENTS

EXE	CUTIV	E SUMMARY	.i
1.	INTRO	DDUCTION	1
2.	CRITE	RIA	3
	2.1.	Regulations 7, 8 & 9	3
	2.2.	Regulation 3	5
	2.3.	Regulation 14A	5
3.	METH	IODOLOGY	7
	3.1.	Meteorological Conditions	7
	3.2.	Topographical Data	7
	3.3.	Ground Absorption	9
	3.4.	Source Sound Levels1	.0
4.	RESU	LTS AND ASSESSMENT1	.1
	4.1.	Outdoor Child Play Noise1	.1
	4.2.	Mechanical Plant Noise1	.3
	4.3.	Car Door Closing Noise1	.5
	4.4.	Indoor Child Play1	.5
5.	RECO	MMENDATIONS1	.7
	5.1.	Environmental Noise1	.7
		5.1.1. Child Play1	.7
		5.1.2. Mechanical Plant1	.7
		5.1.3. Car Doors	.8
	5.2.	Transportation Noise1	.8

List of Tables

Table 2-1 Adjustments Where Characteristics Cannot Be Removed 3
Table 2-2 Baseline Assigned Levels
Table 2-3 Assigned Levels
Table 3-1: Modelling Meteorological Conditions
Table 3-2: Source Sound Power Levels, dB
Table 4-1: Child Play Noise Predicted Levels and Assessment, dB L _{A10} 11
Table 4-2: Mechanical Plant Noise Predicted Levels and Assessment, dB LA10
Table 4-3: Car Door Closing Noise Predicted Levels and Assessment, dB L _{Amax} 15
Table B-1: Percentage of Land Types within 100m and 450m Radii 21
Table B-2: Relevant Roads within 100m and 450m Radii 22
Table B-3: Influencing Factor Calculation, dB

List of Figures

Figure 1-1: Subject Site Location (Source: DPLH PlanWA)	1
Figure 1-2: Proposed Site Plan	2
Figure 3-1: Overview of Noise Model	8
Figure 3-2: Overview of Fencing	9
Figure 4-1: Child Play Noise Contour Plot	12
Figure 4-2: Mechanical Plant Noise Contour Plot	14
Figure 4-3: Car Door Closing Noise Contour Plot	16
Figure B-1: MRWA Published Traffic Data	22

Appendices

Appendix A – Development Plans	. 19
Appendix B – Influencing Factor Calculation	. 20
Appendix C – Terminology	. 23

EXECUTIVE SUMMARY

Lloyd George Acoustics was engaged by Accord Property to undertake a noise assessment for a proposed childcare centre (CCC) to be located at Lot 341 (#53) Rathmines Street, Clarkson. This report considered noise emissions from the proposed childcare centre to surrounding properties, as well as the impact of road traffic noise to the childcare centre.

With regard to the noise emission assessment, this was undertaken using noise modelling and considered child play, mechanical plant and car door closings. The predicted noise from all children playing outside and car door closings is compliant provided the walls shown within the report are constructed. For sections of the fence that require a minimum surface mass 8 kg/m², brick, limestone or double sheeted *Colorbond* can be used. Mechanical plant noise was also calculated to be compliant, however once the plant has been designed and selected, this should be further reviewed to ensure compliance prior to Building Permit.

As the childcare centre is outside the PlanWA trigger zone, no further mitigation measures are required for the childcare centre in regards to traffic noise. This should be reassessed at the detailed design stage.

1. INTRODUCTION

Lloyd George Acoustics was engaged by Accord Property to undertake a noise assessment for a proposed childcare centre (CCC) to be located at Lot 341 (#53) Rathmines Street, Clarkson (refer *Figure* 1-1) with the site plan shown in *Figure* 1-2 and full Development Application (DA) plans provided in *Appendix* A. The purpose of this report is to consider noise emissions from the proposed childcare centre to surrounding properties, as well as the impact of road traffic noise to the childcare centre.

Figure 1-1: Subject Site Location (Source: DPLH PlanWA)

The proposed childcare centre will be open Monday to Friday, 6.30am to 6.30pm and consist of the following:

- Seven internal teaching spaces capable of accommodating up to 116 children, grouped as follows:
 - Activity 1 & 2: 20 places for children aged 3-5 years, in each group;
 - Activity 3: 20 places for children aged 2-3 years;
 - Activity 4 & 5: 16 places for children aged 2-3 years, in each group;
 - Activity 6 & 7: 12 places for children aged 0-2 years, in each group.
- Outdoor play areas (not used prior to 7.00am);
- Amenities and associated mechanical plant such as:
 - Kitchen exhaust fan assumed to be located on roof above;
 - Various exhaust fans (toilets, laundry, nappy room) assumed to be located on the roof above;
 - Air-conditioning (AC) plant, assumed to be located on the ground in the designated yard as shown on the DA Plans;
- Car parking on the west side of the lot.

Figure 1-2: Proposed Site Plan

With regard to noise emissions, consideration is given to noise from child play, mechanical services and closing car doors at neighbouring properties, against the prescribed standards of the *Environmental Protection (Noise) Regulations 1997*.

The Local Development Plan (LDP) notes that the childcare centre has quiet house design Package B requirements, although the latest PlanWA plans show that the childcare centre is outside of the quiet house design trigger distance. The PlanWA plans have been used in this assessment as these are considered to be the most up to date. Therefore, no further mitigation measures are required for the childcare centre in regards to traffic noise. This should be reassessed at the detailed design stage. *Appendix A* shows the LDP and PlanWA Plans.

Appendix C contains a description of some of the terminology used throughout this report.

2. CRITERIA

Environmental noise in Western Australia is governed by the *Environmental Protection Act 1986*, through the *Environmental Protection (Noise) Regulations 1997* (the Regulations).

2.1. Regulations 7, 8 & 9

This group of regulations defines the prescribed standard for noise emissions applicable to child play, mechanical services and car door closing as follows:

"7. Prescribed standard for noise emissions

- (1) Noise emitted from any premises or public place when received at other premises -
 - (a) must not cause, or significantly contribute to, a level of noise which exceeds the assigned level in respect of noise received at premises of that kind; and
 - (b) must be free of
 - (i) tonality; and
 - (ii) impulsiveness; and
 - (iii) modulation,

when assessed under regulation 9.

(2) For the purposes of subregulation (1)(a), a noise emission is taken to significantly contribute to a level of noise if the noise emission ... exceeds a value which is 5 dB below the assigned level at the point of reception."

Tonality, impulsiveness and modulation are defined in regulation 9 (refer *Appendix C*). Under regulation 9(3), "Noise is taken to be free of the characteristics of tonality, impulsiveness and modulation if -

- (a) the characteristics cannot be reasonably and practicably removed by techniques other than attenuating the overall level of noise emission; and
- (b) the noise emission complies with the standard prescribed under regulation 7(1)(a) after the adjustments in the table [Table 2-1] ... are made to the noise emission as measured at the point of reception."

Where	Noise Emission is Not	Where Noise Er	mission is Music	
Tonality	Modulation	Impulsiveness	No Impulsiveness	Impulsiveness
+ 5 dB	+ 5 dB	+ 10 dB	+ 10 dB	+ 15 dB

Table 2-1 Adjustments Where Characteristics Cannot Be Removed

* These adjustments are cumulative to a maximum of 15 dB.

The assigned levels (prescribed standards) for all premises are specified in regulation 8(3) and are shown in *Table 2-2*. The L_{A10} assigned level is applicable to noises present for more than 10% of a representative

assessment period, generally applicable to "steady-state" noise sources. The L_{A1} is for short-term noise sources present for less than 10% and more than 1% of the time. The L_{Amax} assigned level is applicable for incidental noise sources, present for less than 1% of the time.

Premises Receiving	Time Of Dev	Assigned Level (dB)					
Noise	Time Of Day	L _{A10}	L _{A1}	L _{Amax}			
	0700 to 1900 hours Monday to Saturday (Day)	45 + influencing factor	55 + influencing factor	65 + influencing factor			
Noise sensitive	0900 to 1900 hours Sunday and public holidays (Sunday)	40 + influencing 50 + influencing factor factor		65 + influencing factor			
premises: highly sensitive area ¹	1900 to 2200 hours all days (Evening)	40 + influencing factor	50 + influencing factor	55 + influencing factor			
	2200 hours on any day to 0700 hours Monday to Saturday and 0900 hours Sunday and public holidays (Night)	35 + influencing factor	45 + influencing factor	55 + influencing factor			
Noise sensitive premises: any area other than highly sensitive area	All hours	60	75	80			
Commercial Premises	All hours	60 75		80			
Industrial and Utility Premises	All hours	65	80	90			

Table 2-2 Baseline Assigned Levels

1. highly sensitive area means that area (if any) of noise sensitive premises comprising -

(a) a building, or a part of a building, on the premises that is used for a noise sensitive purpose; and

(b) any other part of the premises within 15 metres of that building or that part of the building.

The influencing factor (IF), in relation to noise received at noise sensitive premises, has been calculated as 2 dB, as determined in *Appendix B*. *Table 2-3* shows the assigned levels including the influencing factor and transport factor at the receiving locations.

Premises Receiving Noise		Assigned Level (dB)				
	Time Of Day	L _{A10}	L _{A1}	L _{Amax}		
+2 dB IF Noise sensitive premises: highly sensitive area ¹	0700 to 1900 hours Monday to Saturday (Day)	47	57	67		
	0900 to 1900 hours Sunday and public holidays (Sunday)	42	52	67		
	1900 to 2200 hours all days (Evening)	42	52	57		
	2200 hours on any day to 0700 hours Monday to Saturday and 0900 hours Sunday and public holidays (Night)	37	47	57		

Table 2-3 Assigned Levels

It must be noted the assigned levels above apply outside the receiving premises and at a point at least 3 metres away from any substantial reflecting surfaces.

The assigned levels are statistical levels and therefore the period over which they are determined is important. The Regulations define the Representative Assessment Period (RAP) as "a period of time of not less than 15 minutes, and not exceeding 4 hours, determined by an inspector or authorised person to be appropriate for the assessment of a noise emission, having regard to the type and nature of the noise emission". An inspector or authorised person is a person appointed under Sections 87 & 88 of the Environmental Protection Act 1986 and include Local Government Environmental Health Officers and Officers from the Department of Water Environmental Regulation. Acoustic consultants or other environmental consultants are not appointed as an inspector or authorised person. Therefore, whilst this assessment is based on a 4-hour RAP, which is assumed to be appropriate given the nature of the operations, this is to be used for guidance only.

2.2. Regulation 3

"3. Regulations do not apply to certain noise emissions

- (1) Nothing in these regulations applies to the following noise emissions
 - (a) Noise emissions from the propulsion and braking systems of motor vehicles operating on a road;"

The childcare centre car park is considered a road and therefore vehicle noise (propulsion and braking) is not assessed. Noise from vehicle car doors however are assessed, since these are not part of the propulsion or braking system.

2.3. Regulation 14A

"14A. Waste Collection and Other Works

- (2) Regulation 7 does not apply to noise emitted in the course of carrying out class 1 works if
 - (a) The works are carried out in the quietest reasonable and practicable manner; and
 - (b) The equipment used to carry out the works is the quietest reasonably available;

class 1 works means specified works carried out between -

- (a) 0700 hours and 1900 hours on any day that is not a Sunday or a public holiday; or
- (b) 0900 hours and 1900 hours on a Sunday or public holiday.

specified works means -

- (a) The collection of waste; or
- (b) The cleaning of a road or the drains for a road; or
- (c) The cleaning of public places, including footpaths, cycle paths, car parks and beaches;"

In the case where specified works are to be carried out outside of class 1, a noise management plan is to be prepared and approved by the CEO.

3. METHODOLOGY

Computer modelling has been used to predict the noise emissions from the development to all nearby receivers. The software used was *SoundPLAN 8.2* with the ISO 9613 algorithms (ISO 17534-3 improved method) selected, as they include the influence of wind and are considered appropriate given the relatively short source to receiver distances. Input data required in the model are listed below and discussed in *Section 3.1* to *Section 3.4*:

- Meteorological Information;
- Topographical data;
- Ground Absorption; and
- Source sound power levels.

3.1. Meteorological Conditions

Meteorological information utilised is provided in *Table 3-1* and is considered to represent worst-case conditions for noise propagation. At wind speeds greater than those shown, sound propagation may be further enhanced, however background noise from the wind itself and from local vegetation is likely to be elevated and dominate the ambient noise levels.

Parameter	Day (7.00am to 7.00pm)	Night (7.00pm to 7.00am)		
Temperature (°C)	20	15		
Humidity (%)	50	50		
Wind Speed (m/s)	Up to 5	Up to 5		
Wind Direction*	All	All		

Table 3-1: Modelling Meteorological Conditions

* The modelling package allows for all wind directions to be modelled simultaneously.

Alternatives to the above default conditions can be used where one year of weather data is available and the analysis considers the worst 2% of the day and night for the month of the year in which the worst-case weather conditions prevail (source: *Draft Guideline on Environmental Noise for Prescribed Premises*, May 2016). In most cases, the default conditions occur for more than 2% of the time and therefore must be satisfied.

3.2. Topographical Data

Topographical data was adapted from publicly available information (e.g. *Google*) in the form of spot heights and combined with the site plan.

Surrounding existing buildings were also incorporated in the noise model, as these can provide noise shielding as well as reflection paths. The nearby existing and future buildings are assumed to be single storey and are modelled with a height of 3.5-metres, with receivers 1.4-metres above floor level.

The area is suburban in nature with boundary fencing assumed to be *Colorbond* unless noted otherwise from *Streetview*. Whilst *Colorbond* fencing is 1.8 metres high, it is modelled as 1.6 metres high to take into account the lightweight nature of the product and potential lesser acoustic performance compared to a denser product.

The childcare centre building is incorporated in the noise model as per the *Appendix A* plans. Fencing around the child play area and car park is modelled as shown in *Figure 3-2*. Some sections of the fence are required to be of minimum surface mass 8 kg/m². Examples of such material include brick, limestone and double sheeted *Colorbond*.

Figure 3-1 shows a 2D overview of the noise model with the location of all relevant receivers identified. Pink dots represent point sources in the noise model (car doors, mechanical plant) with the pink polygon representing child play.

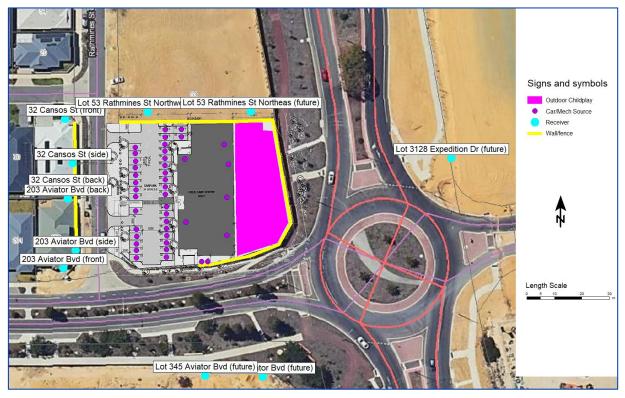


Figure 3-1: Overview of Noise Model

Figure 3-2: Overview of Fencing

3.3. Ground Absorption

The ground absorption has been assumed to be 0.1 (10%) for the roads, 0.5 (50%) outside of the roads and 1.0 (100%) for the play areas, noting that 0.0 represents hard reflective surfaces such as water and 1.0 represents absorptive surfaces such as grass.

3.4. Source Sound Levels

The source sound power levels used in the modelling are provided in 7	Table 3-2.
---	------------

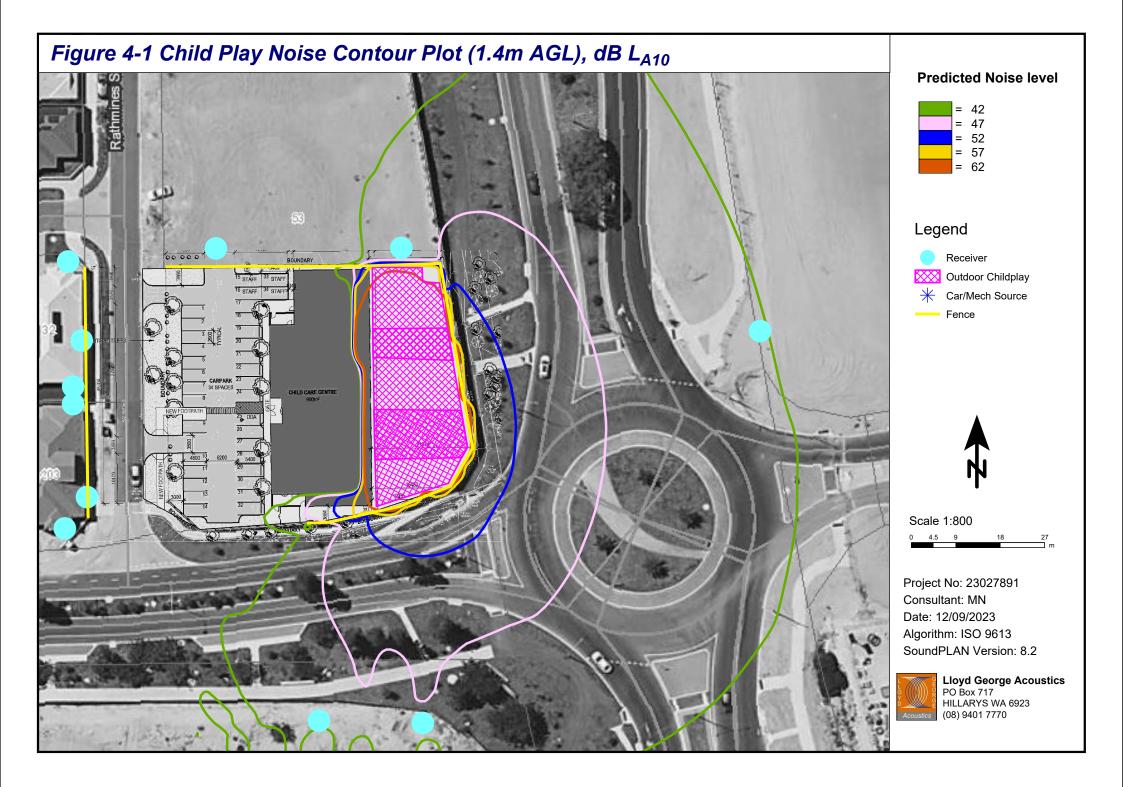
Description		Octave Band Centre Frequency (Hz)							Overall
Description	63	125	250	500	1k	2k	4k	8k	dB(A)
Babies Play Aged 0-2 Years (10 kids), L ₁₀	54	60	66	72	74	71	67	64	78
Toddler Play Aged 2-3 Years (10 kids), L_{10}	61	67	73	79	81	78	74	70	85
Kindy Play Aged 3+ Years (10 kids), L ₁₀	64	70	75	81	83	80	76	72	87
AC Plant, double fan unit (each), L_{10}	72	74	68	69	63	61	53	47	70
General Exhaust Fans (each), L ₁₀	60	65	62	63	60	61	56	53	67
Kitchen Exhaust Fan, L ₁₀	50	64	61	70	69	66	62	50	73
Closing Car Door (each), L _{max}	71	74	77	81	80	78	72	61	84

Table 3-2: Source Sound Power Levels, dB

The following is noted in relation to *Table 3-2*:

- Child play source levels are based on *Guideline for Childcare Centre Acoustic Assessments Version 3.0* produced by the Association of Australasian Acoustical Consultants (AAAC) published September 2020. Where the number of children for individual play areas is specified in the plans, these have been adjusted from the reference source levels using appropriate acoustical calculations. Outdoor child play was modelled as area sources at 1.0-metre above ground level. The sound power levels used in the model were scaled as follows:
 - 24 children aged 0-2 years = 81 dB(A);
 - 52 children aged 2-3 years = 92 dB(A);
 - 40 children aged 3+ years = 93 dB(A).
- Based on the AAAC Guideline 3.0, source sound power levels for AC condensing units were assumed. Medium sized (double fan) outdoor units were deemed appropriate with two (2) modelled as point sources in the services area.
- Other mechanical plant includes five (5) exhaust fans (toilets and laundry) and one kitchen exhaust fan. All were modelled as point sources approximately 0.5-metres above roof level and above the area serviced.
- Car doors closing were modelled as a point source 1.0-metre above ground level. Since noise from a car door closing is a short term event, only the L_{Amax} level is applicable.

4. RESULTS AND ASSESSMENT

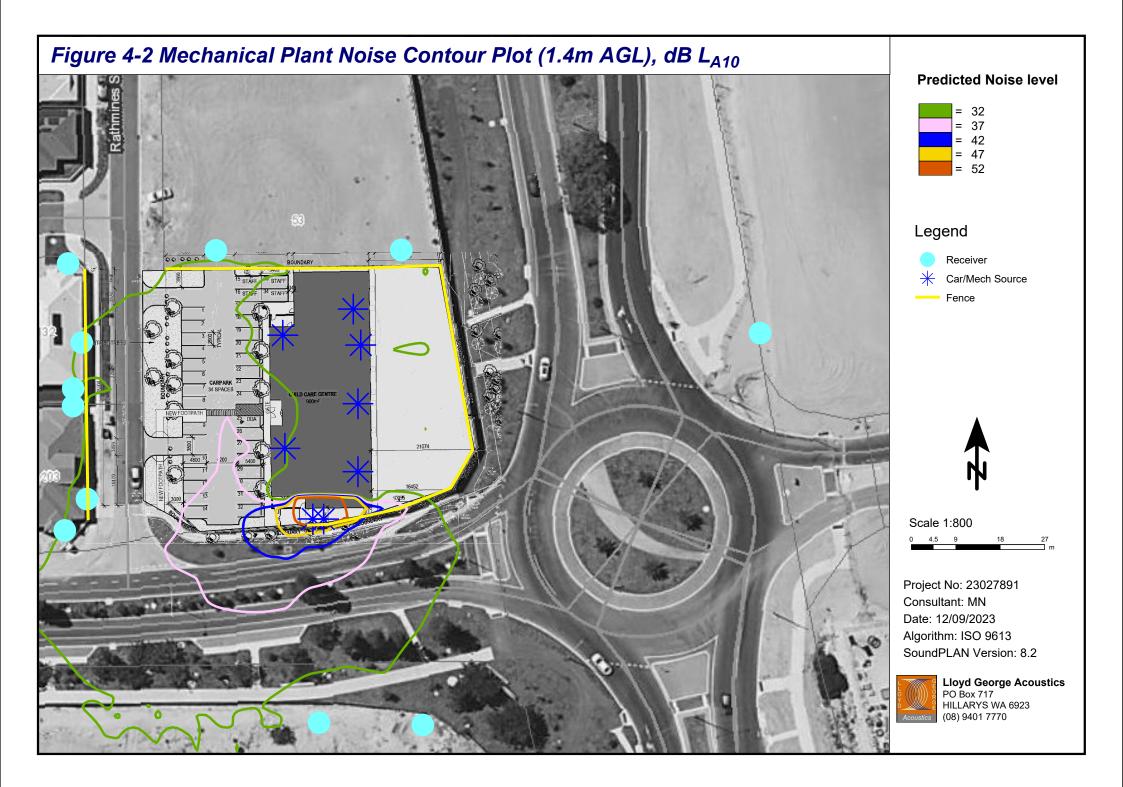

4.1. Outdoor Child Play Noise

The childcare centre development will host up to 116 children. It is noted play time is generally staggered and therefore not all children would be playing outside at once for extended periods of time. However, noise levels were conservatively predicted for all children playing simultaneously, as a worst-case scenario with the results provided and assessed in *Table 4-1*. The critical assigned level is during the day, as whilst the childcare centre will open at 6.30am, child play will not commence until after 7.00am. Noise from child play is not considered to contain annoying characteristics within the definition of the Regulations and therefore no adjustments are made to the predicted noise levels. A noise contour plot is also provided in *Figure 4-1* showing noise levels at ground floor.

Receiver	Babies (0-2 yo)	Toddler (2-3 yo)	Kindy (3+ yo)	Total	Assigned Level	Assessment
32 Cansos St	18	24	25	28	47	Complies
203 Aviator Bvd	14	25	31	32	47	Complies
Lot 53 Rathmines St North (future)	38	43	41	46	47	Complies
Lot 345 Aviator Bvd (future)	27	39	42	44	47	Complies
Lot 347 Aviator Bvd (future)	22	36	39	41	47	Complies
Lot 669 Aviator Bvd (future)	29	41	42	45	47	Complies
Lot 3128 Expedition Dr (future)	28	39	39	42	47	Complies

Table 4-1: Child Play Noise Predicted Levels and Assessment, dB LA10

Based on a conservative scenario of all 116 children playing outside simultaneously, the assessment demonstrates compliance is achieved during the day.


4.2. Mechanical Plant Noise

Mechanical plant noise consists of the outdoor AC condensing units and exhaust fans. Predicted and assessed noise levels are provided in *Table 4-2*. The critical assigned level is during the night, as the plant may operate prior to 7.00am. An adjustment of + 5 dB is included for tonality, since this may be present for such noise sources. A noise contour plot is also provided in *Figure 4-2* showing noise levels at ground floor.

Receiver	AC	Exhaust Fans	Total	Total Adjusted	Assigned Level	Assessment
32 Cansos St	12	28	28	33	37	Complies
203 Aviator Bvd	28	30	32	35	37	Complies
Lot 53 Rathmines St North (future)	7	29	29	34	37	Complies
Lot 345 Aviator Bvd (future)	27	26	30	33	37	Complies
Lot 347 Aviator Bvd (future)	29	27	31	34	37	Complies
Lot 669 Aviator Bvd (future)	26	25	29	32	37	Complies
Lot 3128 Expedition Dr (future)	9	24	24	29	37	Complies

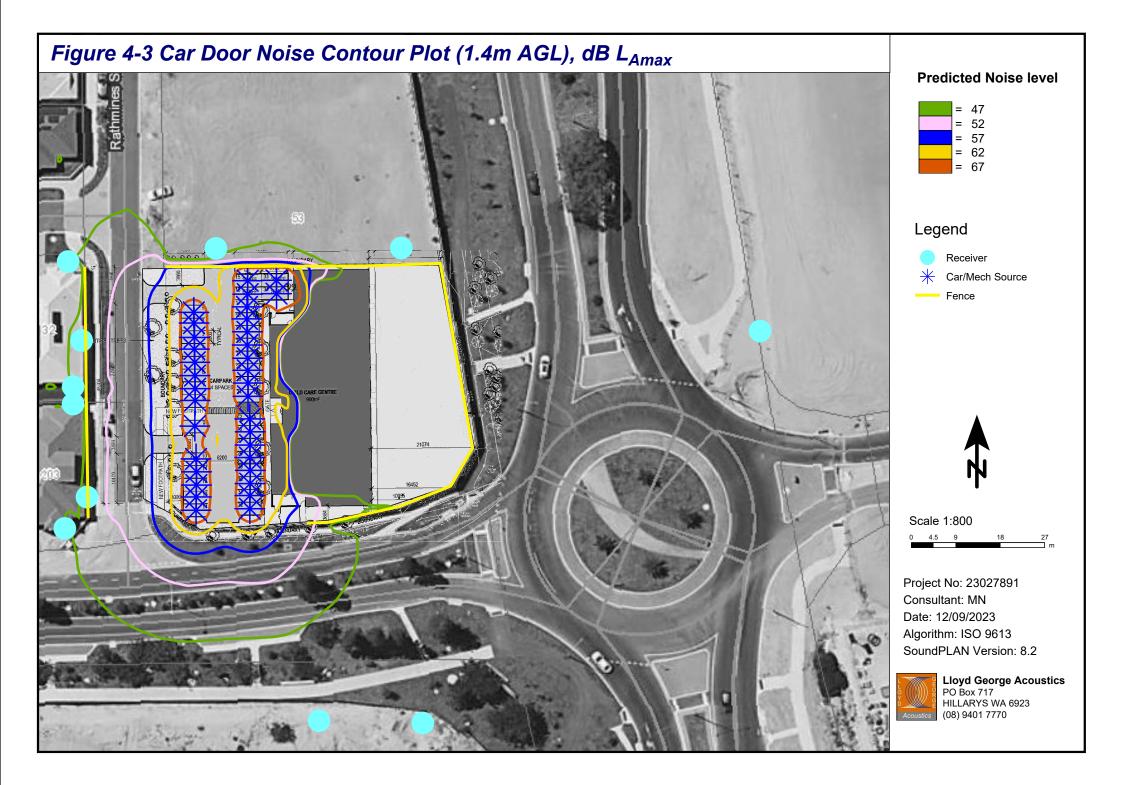
Table 4-2: Mechanical Plant Noise Predicted Levels and Assessment, dB LA10

The calculations show compliance at all receiver locations. It must be noted that the assessment is based on assumptions in relation to the number, location, size and type of mechanical plant. Therefore, once the mechanical plant has been designed and selected, noise is to be reviewed by a suitably qualified acoustical consultant.

4.3. Car Door Closing Noise

Predicted and assessed noise levels for car doors closing are provided in *Table 4-3* being the maximum noise level from the worst-case car bay for each receiver. The critical assigned level is during the night, as car door closings will occur prior to 7.00am. An adjustment of + 10 dB is included for impulsiveness, since this may be present for such noise sources. A noise contour plot is also provided in *Figure 4-3* showing noise levels at ground floor.

Receiver	Car Door	Total Adjusted	Assigned Level	Assessment
32 Cansos St	45	55	57	Complies
203 Aviator Bvd	47	57	57	Complies
Lot 53 Rathmines St North (future)	45	55	57	Complies
Lot 345 Aviator Bvd (future)	42	52	57	Complies
Lot 347 Aviator Bvd (future)	42	52	57	Complies
Lot 669 Aviator Bvd (future)	39	49	57	Complies
Lot 3128 Expedition Dr (future)	22	32	57	Complies


Table 4-3: Car Door Closing Noise Predicted Levels and Assessment, dB L_{Amax}

Noise from car doors is predicted to comply at all nearest receivers during the critical night period.

4.4. Indoor Child Play

An assessment of noise levels from indoor child play was carried out and the resulting noise levels at all locations were predicted to be well below that of outdoor child play considered in *Section 4.1*. This assessment was carried out based on the following considerations:

- Internal noise levels within activity rooms would not exceed those from outdoor play for each age group, regardless of windows being open or closed; and
- Any music played within the internal activity areas would be 'light' music with no significant bass content and played at a relatively low level.

5. RECOMMENDATIONS

5.1. Environmental Noise

5.1.1. Child Play

The predicted noise from all children playing outside is compliant provided the fences shown in *Section 3.1.2*. are constructed. For sections of the fence that require a minimum surface mass 8 kg/m², brick, limestone or double sheeted *Colorbond* can be used.

Whilst not necessarily required for compliance, to further minimise noise impacts as part of best practice, the following are provided:

- The behaviour and 'style of play' of children should be monitored to prevent particularly loud activity e.g. loud banging/crashing of objects, 'group' shouts/yelling;
- Favour soft finishes in the outdoor play area to minimise impact noise (e.g. soft grass, sand pit(s), rubber mats) over timber or plastic;
- Favour soft balls and rubber wheeled toys;
- Crying children should be taken inside to be comforted;
- Child play to be staggered;
- No amplified music to be played outside;
- Any music played within the internal activity areas to be 'light' music with no significant bass content and played at a relatively low level;
- Car park drainage grates or similar to be plastic or metal with rubber gasket and secured to avoid excess banging.

5.1.2. Mechanical Plant

For mechanical plant, the following are recommended:

- Once the mechanical plant has been designed and selected, the noise levels shall be reviewed prior to Building Permit;
- All exhaust fans shall be located inside the ceiling void and shall be axial fan type, allowing the incorporation of an attenuator if required;
- All fans shall be variable speed drive so that maximum speed is only occurring when necessary with demand;
- Air-conditioning shall have a 'night' / 'quiet' mode option, in case required for prior to 7.00am operation, subject to final detailed analysis;
- All plant shall be selected taking into consideration noise levels. That is, when comparing manufacturers of equivalent equipment, select the quieter model;
- All plant is to be appropriately vibration isolated to 95% isolation efficiency.

5.1.3. Car Doors

The predicted noise from car door closings is compliant provided the fences shown in *Section 3.1.2*. are constructed. For sections of the fence that require a minimum surface mass 8 kg/m², brick, limestone or double sheeted *Colorbond* can be used.

5.2. Transportation Noise

As the childcare centre is outside the PlanWA trigger zone, no further mitigation measures are required for the childcare centre in regards to traffic noise. This should be reassessed again at the detailed design stage.

Appendix A – Development Plans

LOCAL DEVELOPMENT PLAN PROVISIONS

The following standards are deemed to meet the relevant Design Principles of the R-Codes and do not require consultation with the adjoining landowners.

Unless provided for below, or as part of LSP79, the provisions of District Planning Scheme No. 2 and the R-Codes apply.

1.0 PEDESTRIAN ACCESSWAY AND LANEWAY CARPARK

The following provisions are applicable to lots fronting or siding a Pedestrian Access Way (PAW) or laneway carpark:

• Boundary walls are not permitted adjoining a PAW.

• Dwellings on lots shall be setback a minimum distance of 1.0m from the PAW or laneway carpark boundary.

2.0 QUIET HOUSE DESIGN

Quiet house design requirements are applicable to those lots identified on this plan. Details of quiet house design packages are included in Attachment 1.

3.0 BUILDING ORIENTATION (LOTS 765-772)

All dwellings are to orientate toward Roulettes Parade as the designated primary

All structures (including dwellings, garages and fences) are to be setback a minimum of 1.0m from the Antares Street boundary.

4.1 Lots Coded R30

4.1.1 Lots with a frontage of 13 metres or less

- A variation to the minimum open space be reduced to 30% of the site subject to the criteria under Table 3A of LSP 79, or the below.
- The provision of an outdoor living area which is directly accessible from an internal living area and:
- Has a minimum outdoor living area of 30m²,
- Has a minimum dimension of 4m (which may include the nominated secondary street setback area),
- Is located adjoining the northernmost or easternmost side boundary.

4.1.2 Lots with a frontage of more than 13 metres

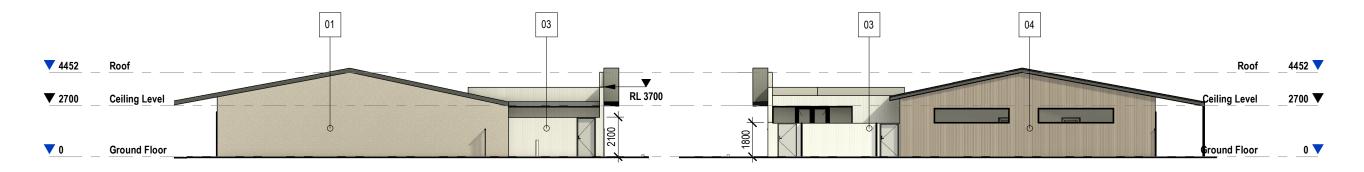
The minimum open space requirement is reduced to 40% subject to compliance with those same requirements as specified above.

4.2 Lots Coded R40 - R60

A variation to the minimum open space be reduced to a minimum of 25% of the site subject to the criteria under Table 3B of LSP 79.

Development Plan has been approve ed provisions of District Planning Scher	
Approval Services nneroo	Date
LOCAL DE	VELOPMENT PLAN 6

Catalina Estate (1 of 2)


	Layers	=	<	I want to	- 10 80	
State	Planning Policies	~	¢	1 F	T	
Filter	Layers 😢	Filter	+			
	Areas	•	-	- III	in	
	SPP 4.2 Activity Centres for Perth and Peel	>	Lange and	30		
+	SPP 5.1 Land Use Planning in the Vicinity of Perth Airport					
+	SPP 5.3 Jandakot Airport Vicinity			HE MAN	K	
1.1.1.1	SPP 5.4 Road and Rail Noise					
	+ 🗹 SPP 5.4 Road & Rail Noise Routes					
	— 🗹 SPP 5.4 Road & Rail Trigger Distanc	e	18 1		Val	
	Strategic freight or major traffic route trigger	>	7	112 0 10		
	Cther significant Other significant	>				
	Metropolitan passenger railway trigger	>	E.			
	🔽 📃 Freight railway trigger	>	1		JUH!	
+	SPP 6.1 Leeuwin-Naturaliste Ridge Policy		C C T A	ROIT		
+	SPP 6.3 Ningaloo Coast		And a	43 40 20	1	

Rathmines St, CLARKSON

1 : 200

NORTH ELEVATION

1 : 200

SOUTH ELEVATION

EAST ELEVATION

1 : 200

01 HIGH TEXTURE PAINTED FINISH

03 AXON VERTICAL CLADDING. PAINT FINISH: DULUX WHITE ON WHITE

04 AXON GRAINED CLADDING. PAINT FINISH: DULUX FUDGE

		DA ISSUE ISSUED FOR DEVELOPMENT APPROVAL 19/09/2023 11:46:12 AM			
		Rev	Amendment	Date	
Roof	4452 🔻	1	DA ISSUE	09/08/23	
		2	ISSUE FOR INFORMATION	19/09/23	
eiling Level	2700 🔻				
round Floor	0 🔻				

28 Chesser Street, Adelaide, South Australia 5000 Telephone : 08 8203 5800 Facsimile : 08 8223 2440 ABN 65 007 846 586 brownfalconer.com.au

ACCORD PROPERTY

CLARKSON CCC

ELEVATIONS

Scale	1 : 200	
Drawn	BH	
Date	AUGUST 2023	
Job No.	2023066	
Dwg No.	DA08 Rev: 2	A3 SHEET

DA ISSUE

ISSUED FOR DEVELOPMENT APPROVAL 19/09/2023 11:46:02 AM

Rev	Amendment	Date
1	DA ISSUE	09/08/23
2	ISSUED FOR COMMENT	06/09/23
3	ISSUE FOR INFORMATION	19/09/23

NUMBER OF PLACES	116
NUMBER OF STAFF	22
DEVELOPMENT AREA	6907m ²
SITE AREA	2907m ²
SITE AREA PER PLACE	25m ²
TOTAL LANDSCAPING AREA	170m²
NUMBER OF TREES	10
BUILDING AREA	900m²
BUILDING AREA PER PLACE	7.75m²
OUTDOOR PLAY AREA	830m²
NUMBER OF CARPARKS	33

ACCORD PROPERTY

CLARKSON CCC

SITE PLAN

Scale	1 : 400		
Drawn	Author		
Date	AUGUST 2023		1
Job No.	2023066	+	/
Dwg No.	DA05	Rev: 3	A3 SHEET

NUMBER OF PLACES

SITE AREA SITE AREA PER PLACE

BUILDING AREA BUILDING AREA PER PLACE

OUTDOOR PLAY AREA NUMBER OF CARPARKS

1 : 250

DA ISSUE

ISSUED FOR DEVELOPMENT APPROVAL 6/09/2023 3:33:21 PM

Rev	Amendment	Date
1	DA ISSUE	09/08/23
2	ISSUED FOR COMMENT	06/09/23

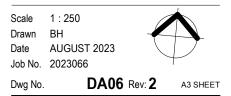
116

2907m² 25m²

900m² 7.75m²

830m² 34

 28
 Chesser Street, Adelaide, South Australia 5000


 Telephone :
 08
 8203
 5800
 Facsimile :
 08
 8223
 2440

 ABN 65
 007
 846
 586
 brownfalconer.com.au

ACCORD PROPERTY

CLARKSON CCC

FLOOR PLAN

Appendix B – Influencing Factor Calculation

The assigned levels combine a baseline assigned level with an influencing factor, with the latter increasing the assigned level on the basis of the existence of significant roads and commercial or industrial zoned land within an inner circle (100 metre radius) and an outer circle (450 metre radius) of the noise sensitive premises. The calculation for the influencing factor is:

 $= \frac{1}{10} (\% \text{ Type } A_{100} + \% \text{ Type } A_{450}) + \frac{1}{20} (\% \text{ Type } B_{100} + \% \text{ Type } B_{450})$ where: % Type A_{100} = the percentage of industrial land within a 100m radius of the premises receiving the noise % Type A_{450} = the percentage of industrial land within a 450m radius of the premises receiving the noise % Type B_{100} = the percentage of commercial land within a 100m radius of the premises receiving the noise % Type B_{450} = the percentage of commercial land within a 450m radius of the premises receiving the noise % Type B_{450} = the percentage of commercial land within a 450m radius of the premises receiving the noise + Transport Factor (maximum of 6 dB) = 2 for each secondary road (6,000 to 15,000 vpd) within 100m = 2 for each major road (>15,000 vpd) within 450m = 6 for each major road within 100m

The nearest noise sensitive premises are identified as:

- 32 Cansos St
- 203 Aviator Bvd
- Lot 53 Rathmines St North (proposed)
- Lot 345 Aviator Bvd (proposed)
- Lot 347 Aviator Bvd (proposed)
- Lot 669 Aviator Bvd (proposed)
- Lot 3128 Expedition Dr (proposed)

Table B-1 shows the percentage of industrial and commercial land within the inner (100 metre radius) and outer (450 metre radius) circles of the noise sensitive premises.

Receiver	Land Type	Within 100m	Within 450m
Nearby Residences	Type A - Industrial and Utility	0	0
	Type B – Commercial	0	0

From the Main Roads WA Traffic Map (refer *Figure B-1*), *Table B-2* shows the relevant roads and their traffic counts within the inner (100 metre radius) and outer (450 metre radius) circles.

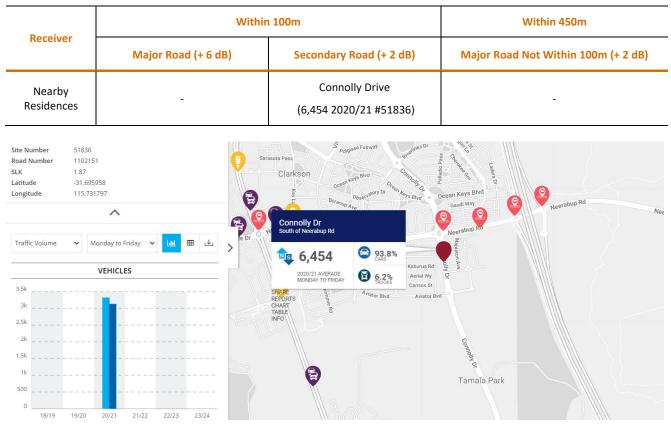


Table B-2: Relevant Roads within 100m and 450m Radii

Figure B-1: MRWA Published Traffic Data

Table B-3 combines the percentage land types and Transport Factor to calculate the influencing factor.

Table B-3: Influencing Fo	actor Calculation, dB
---------------------------	-----------------------

Receiver	Industrial Land	Commercial Land	Transport Factor	Total
Nearby Residences	0	0	2.0	2

The influencing factor calculated in *Table B-3* is combined with those baseline assigned levels of *Table 2-2*, resulting in the project assigned levels provided in *Table 2-3*.

Appendix C – Terminology

The following is an explanation of the terminology used throughout this report:

Decibel (dB)

The decibel is the unit that describes the sound pressure levels of a noise source. It is a logarithmic scale referenced to the threshold of hearing.

• A-Weighting

An A-weighted noise level has been filtered in such a way as to represent the way in which the human ear perceives sound. This weighting reflects the fact that the human ear is not as sensitive to lower frequencies as it is to higher frequencies. An A-weighted sound level is described as L_A, dB.

• Sound Power Level (L_w)

Under normal conditions, a given sound source will radiate the same amount of energy, irrespective of its surroundings, being the sound power level. This is similar to a 1kW electric heater always radiating 1kW of heat. The sound power level of a noise source cannot be directly measured using a sound level meter but is calculated based on measured sound pressure level at known distances. Noise modelling incorporates source sound power levels as part of the input data.

• Sound Pressure Level (L_p)

The sound pressure level of a noise source is dependent upon its surroundings, being influenced by distance, ground absorption, topography, meteorological conditions etc. and is what the human ear actually hears. Using the electric heater analogy above, the heat will vary depending upon where the heater is located, just as the sound pressure level will vary depending on the surroundings. Noise modelling predicts the sound pressure level from the sound power levels taking into account ground absorption, barrier effects, distance etc.

L_{ASlow}

This is the noise level in decibels, obtained using the A-frequency weighting and the S (slow) time weighting. Unless assessing modulation, all measurements use the slow time weighting characteristic.

L_{AFast}

This is the noise level in decibels, obtained using the A-frequency weighting and the F (fast) time weighting. This is used when assessing the presence of modulation.

• L_{APeak}

This is the greatest absolute instantaneous sound pressure level in decibels using the A-frequency weighting.

L_{Amax}

An L_{Amax} level is the maximum A-weighted noise level during a particular measurement.

• L_{A1}

The L_{A1} level is the A-weighted noise level exceeded for 1 percent of the measurement period and is considered to represent the average of the maximum noise levels measured.

• L_{A10}

The L_{A10} level is the A-weighted noise level exceeded for 10 percent of the measurement period and is considered to represent the "intrusive" noise level.

• L_{A90}

The L_{A90} level is the A-weighted noise level exceeded for 90 percent of the measurement period and is considered to represent the "background" noise level.

L_{Aeq}

The equivalent steady state A-weighted sound level ("equal energy") in decibels which, in a specified time period, contains the same acoustic energy as the time-varying level during the same period. It is considered to represent the "average" noise level.

• One-Third-Octave Band

Means a band of frequencies spanning one-third of an octave and having a centre frequency between 25 Hz and 20000 Hz inclusive.

• Representative Assessment Period

Means a period of time not less than 15 minutes, and not exceeding four hours, determined by an inspector or authorised person to be appropriate for the assessment of a noise emission, having regard to the type and nature of the noise emission.

• L_{Amax} assigned level

Means an assigned level, which, measured as a L_{ASlow} value, is not to be exceeded at any time.

• L_{A1} assigned level

Means an assigned level, which, measured as a L_{ASlow} value, is not to be exceeded for more than 1 percent of the representative assessment period.

• L_{A10} assigned level

Means an assigned level, which, measured as a L_{ASlow} value, is not to be exceeded for more than 10 percent of the representative assessment period.

L_{Aeq(Day)}

The $L_{Aeq(Day)}$ level is the logarithmic average of the L_{Aeq} levels from 6.00am to 10.00pm.

L_{Aeq(Night)}

The $L_{Aeq(Night)}$ level is the logarithmic average of the L_{Aeq} levels from 10.00pm to 6.00am.

• Tonal Noise

A tonal noise source can be described as a source that has a distinctive noise emission in one or more frequencies. An example would be whining or droning. The quantitative definition of tonality is:

- the presence in the noise emission of tonal characteristics where the difference between -
 - (a) the A-weighted sound pressure level in any one-third octave band; and
 - (b) the arithmetic average of the A-weighted sound pressure levels in the 2 adjacent one-third octave bands,

is greater than 3 dB when the sound pressure levels are determined as $L_{Aeq,T}$ levels where the time period T is greater than 10% of the representative assessment period, or greater than 8 dB at any time when the sound pressure levels are determined as $L_{A Slow}$ levels.

This is relatively common in most noise sources.

• Modulating Noise

A modulating source is regular, cyclic and audible and is present for at least 10% of the measurement period. The quantitative definition of modulation is:

- a variation in the emission of noise that
 - (a) is more than 3 dB L_{A Fast} or is more than 3 dB L_{A Fast} in any one-third octave band; and
 - (b) is present for at least 10% of the representative assessment period; and
 - (c) is regular, cyclic and audible.

Impulsive Noise

An impulsive noise source has a short-term banging, clunking or explosive sound. The quantitative definition of impulsiveness means:

a variation in the emission of a noise where the difference between L_{Apeak} and L_{Amax} is more than 15 dB when determined for a single representative event.

Major Road

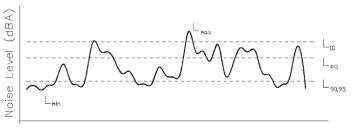
Is a road with an estimated average daily traffic count of more than 15,000 vehicles.

• Secondary / Minor Road

Is a road with an estimated average daily traffic count of between 6,000 and 15,000 vehicles.

Noise-sensitive land use and/or development

Land-uses or development occupied or designed for occupation or use for residential purposes (including dwellings, residential buildings or short-stay accommodation), caravan park, camping ground, educational establishment, child care premises, hospital, nursing home, corrective institution or place of worship.

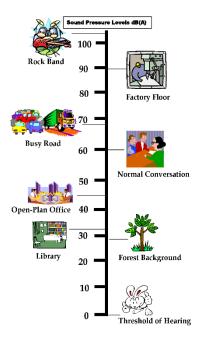

• R_w

This is the weighted sound reduction index. It is a single number rating determined by moving a grading curve in integral steps against the laboratory measured transmission loss until the sum of the deficiencies at each one-third-octave band, between 100 Hz and 3.15 kHz, does not exceed 32 dB. The higher the R_w value, the better the acoustic performance.

• C_{tr}

This is a spectrum adaptation term for airborne noise and provides a correction to the R_w value to suit source sounds with significant low frequency content such as road traffic or home theatre systems. A wall that provides a relatively high level of low frequency attenuation (i.e. masonry) may have a value in the order of – 4 dB, whilst a wall with relatively poor attenuation at low frequencies (i.e. stud wall) may have a value in the order of -12 dB.

• Chart of Noise Level Descriptors



Time

Austroads Vehicle Class

VEF	ICLE CLASSIFICATION SYSTEM
	AUSTROADS
CLASS	LIGHT VEHICLES
1	BOS Co: Vo: Wolcocke BN: Bicycla, Molocycle
2	S-DIF - TOWINS Index. Caravan, Boot
	HEAVY VEHICLES
3	
4	THREE AKLE TRUCK OR HUS
5	FOLR (or FMI) AXLE TRUCK *4 (5) axtes 2 axe groups
6	Dese ANE ANELAND -3 des 1 de groupe
7	
8	PK ANS ARTICLARD *5 cales, 3+ cale groups
9	SIX MEE WITCHARED 16 dets, 3-r det graups of 7-r dets, 3 det graups
	LONG VEHICLES AND ROAD TRAINS
10	B DOUBLE or HRAY RUCK and TRALER
11	DOUBLE ROAD TRAN *7 + cales, 5 or 6 cale groups
12	TERLE ROAD TWAN *7+ cales, 7+ cales groups

• Typical Noise Levels

