

LOCAL STRUCTURE PLAN ENGINEERING REPORT PRECINCT 15 EAST WANNEROO, MARIGINIUP February 2023

Level 2, 431 Roberts Road, Subiaco WA 6008. PO Box 680 Subiaco, WA 6904 T (08) 9422 5800 E admin@cosweb.com.au W cosweb.com.au

CONTENTS

1. EXECUTIVE SUMMARY	3
2. INTRODUCTION	4
3. SITE DESCRIPTION	5
3.1 Acid Sulphate Soils	6
3.2 Existing Topography	7
3.3 Geology	8
3.4 Groundwater	10
4. SITEWORKS & EARTHWORKS	11
4.1 Typical Earthwork Strategy	11
4.2 Basic Raw Materials	11
5. DRAINAGE STRATEGY	12
5.1 Integrated Urban Water Management	12
1.5.1 Stormwater Management	13
1.5.2 Water Quality Management	13
5.2 Stormwater Collection and Management	13
6. Roadworks & Footpaths	14
6.1 Traffic and Transportation	14
6.2 Regional Roads	14
6.3 Future Development Roads	15
6.4 Footpaths	
7. WASTEWATER	
8. WATER RETICULATION	19
8.1 Water Resources	19
9. POWER SUPPLY	20
10. TELECOMMUNICATIONS	20
11. CONCLUSION	21
Appendix A	22
Report on Preliminary Geotechnical Investigation – Proposed Residential Development Lot 803 Coog Lot 1673 Rousset Road, Mariginiup, WA	-
Appendix B	23
Report on Preliminary Geotechnical Investigation – Proposed Residential Development Stage 2 - R Mariginiup, WA	
Appendix C	24
Preliminary Earthworks Plan	24
Appendix D	25
Preliminary Sewer Catchment Plan	25

1. EXECUTIVE SUMMARY

This report has been prepared by Cossill & Webley Pty Ltd (CW) for the East Wanneroo Precinct 15 Local Structure Plan (Mariginiup). It summarises the results of a review of the civil engineering aspects which have informed and support the delivery of the structure plan amendment for a proposal to residential and are related to the future servicing of the developed land.

This report provides details on each major infrastructure type and a servicing strategy for the implementation required for the development of the LSP area. The level of detail provided is consistent with the requirements of a Local Structure Plan, and acknowledges further detailed work will be required at the time of subdivision.

The engineering review has covered siteworks, roadworks, stormwater drainage, sewerage, water supply and utility services.

The investigation has found the land is capable of supporting development in accordance with the proposed Local Structure Plan with a logical progressive extension of infrastructure and base capacity.

The existing ground conditions and past land uses will not limit the proposed urban development.

Road access to the development will initially be via the existing Coogee Road to the north, which connects to Joondalup Drive to the west.

Sewer infrastructure will be provided via a gravity network internal to the LSP area and provision of new Waste Water Pumping Stations (WWPS). There is currently capacity for new flows generated from the EWDSP area within the existing network west of Precinct 15. The Water Corporation would need to make this capacity available for the proposed development and agree an interim outfall for the LSP area.

Water supply can be provided via an extension of the existing water reticulation network to the north and west.

Initial power supply can be provided by extension of the existing high voltage HV underground infrastructure in Coogee Road from the Wanneroo Zone Substation.

Telecommunications are available from existing services to the west.

The investigations and preparation of this report is largely based on preliminary advice from the various service authorities. The information is current as of February 2023, and is subject to change as development proceeds in the corridor resulting in the extension of service infrastructure and the creation of new capacity.

2. INTRODUCTION

This report has been prepared by Cossill & Webley Pty Ltd (CW) for Local Structure Plan for Precinct 15 of the East Wanneroo District Structure Plan (EWDSP) in Mariginiup. It summarises the results of a review of the civil engineering aspects which have informed and support the delivery of the structure plan amendment and are related to the future servicing of the developed land.

The preparation of the Precinct 15 Local Structure Plan has been carried out by a team of consultants, led by CDP Town Planning & Urban Design on behalf of Stockland, and covers an area of approximately 325 hectares which could yield approximately 3800 dwellings.

The Precinct 15 LSP area is identified by the red boundary presented below in Figure 1

Figure 1

Figure 1 - Site Plan (MNG Maps 2022)

3. SITE DESCRIPTION

The Precinct 15 LSP is situated within the City of Wanneroo, approximately 45 kilometres north of the Perth city centre. The Site is bound by existing rural and rural-residential properties. The majority of the site has been cleared historically prior to 1965 for grazing purposes. There has been some regrowth across the site since this time. Vegetation types vary from shrubs and low lying bushes through to mature trees of significant height. *Figure 2* below refers.

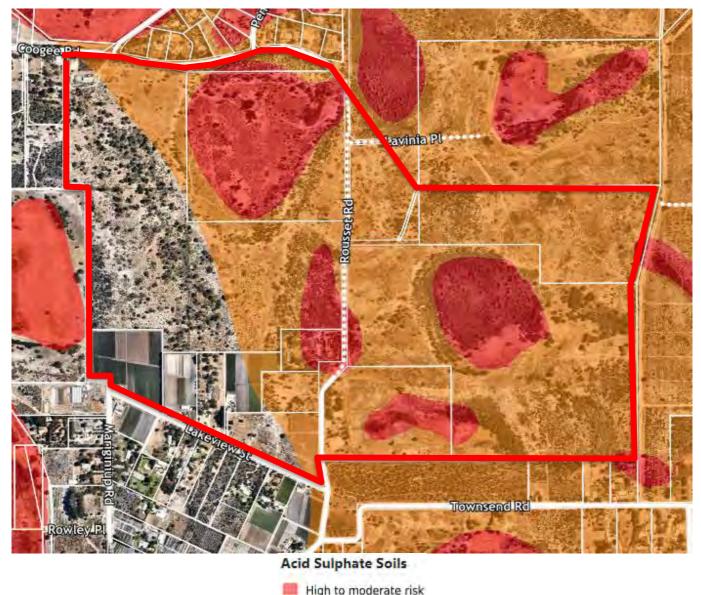


Figure 2 – Aerial Photography (MetroMap 2022)

3.1 Acid Sulphate Soils

A desk top review of the Department of Environment and Conservation's ASS Risk Map for the North Metropolitan Region for potential acid sulphate soils (ASS) indicates that the site has varying degrees of risk for encountering ASS across the site, ranging from no known risk of ASS occurring within 3m of the natural soil surface (or deeper) on the western edge of the LSP area, to low to moderate and moderate to high risk of encountering ASS in eastern portions of the Site. Figure 3 below refers

Moderate to low risk

Figure 3 – Aerial Photography (MetroMap 2022)

Areas of high/moderate risk are typically located where Peaty Clays are denoted on the Geological Survey of Western Australia Perth Metropolitan Region soils map, and are coincident with lower areas of the site in closer proximity to the groundwater table.

Management of ASS soils or dewatering effluent requires the preparation of an Acid Sulphate Management Plan which is adhered to during construction works. Management of this issue is typical within the land development construction industry in Perth and can be appropriately managed through the course of the development.

As the planning for the Site progresses, further testing will be undertaken to determine the presence of ASS on Site, and the potential impact on proposed development

3.2 Existing Topography

Elevation contours across the Site are presented below in Figure 4.

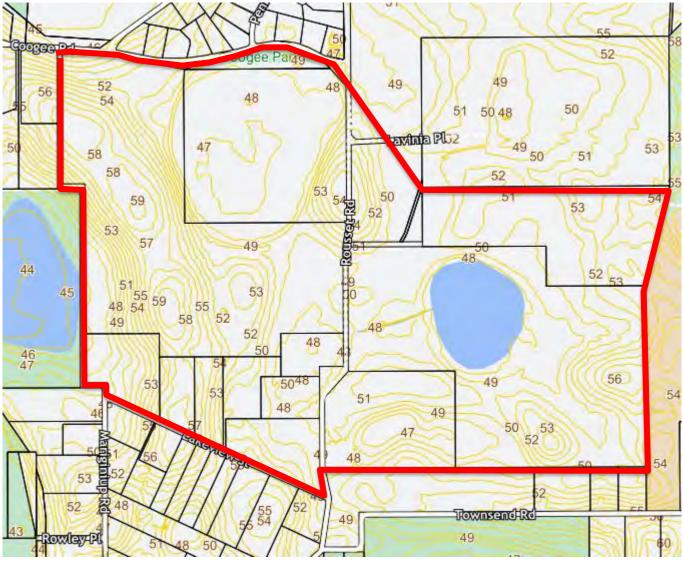


Figure 4 – Site Contours (MNG Access, 2023)

In the western portion of the Site, the landform is defined by a ridge at approximately RL 57 – 59m AHD which runs from the intersection of Coogee Road and Pinelake Trail down to Lakeview Street in the south. Land generally falls away from this ridge to Little Mariginiup Lake in the west, which sits outside the LSP area, and a low area at approximate RL 47m AHD within the LSP area. East of Rousset Road, levels vary, but generally the periphery of the LSP area grades down into a centrally located wetland area at approximately RL 48m AHD.

3.3 Geology

The Geological Survey of Western Australia Perth Metropolitan Region Soils Maps indicates that the Site is typified by a variety of soil types as presented in *Figure 5* below.

Along the main ridgeline in the western portion of the Site, and immediately west to the Site's boundary, the Geological Survey of Australia indicates that the geological conditions of the Site is Sand derived from Tamala Limestone. East of the ridgeline, the Site is largely a combination of Bassendean Sands and Bassendean Sands over Guildford Formation in the form of Pebbly Silt. In lower areas of the Site, the Geological Survey of Australia suggests that Peaty Clays could be encountered.

Both the Sand derived from Tamala Limestone and Bassendean Sands are soil types are well suited to urbanisation, and are generally very permeable, allowing for the on-site disposal of runoff from newly created roads and lots. Where Bassendean Sand overlays Guildford Formation consideration of the thickness of the sand layer will be need to be made to ensure that an adequate separation from the underlying Guildford layer is achieved to meet geotechnical requirements. Guildford Formations such as Pebbly Silts are generally found in areas where the water table is close to the surface, and may require removal of thicker topsoil layers, blending with free draining sand and subsurface drainage to support development. Management of this soil type is not unusual within the Perth Metropolitan region, and does not pose a significant risk to the development.

Whilst the geological formations can support urban development, ground improvement works will be required in the Peaty Clay swamp areas.

Two preliminary site-specific geotechnical investigations have been undertaken over the LSP area by Douglas Partners, and are included as Appendices to this report. The geotechnical investigation generally concurs with the soils maps, however no Peaty Clay was encountered in the western part of the site. Some localised organic material was found in the west, along with peaty sands in the east. The geotechnical report accompanying the investigation outlines preliminary site classifications, and site preparation requirements for urbanisation. The geotechnical report confirms the Site is suitable for urban development and provides advice on the disposal of stormwater runoff and construction requirements. The geotechnical report confirms that the majority of the site will be Class A under the Australian Standard AS2870 – Residential Slabs and Footings code.

The Site is considered to be well suited for future urban development in terms of topography and soils and will provide a suitable foundation for roads, infrastructure and residential development.

3.4 Groundwater

The Annual Average Maximum Groundwater Level (AAMGL) varies from just above RL 52.0m AHD on the eastern boundary to just below RL 46.0m AHD at the western boundary according to the Department of Water's Perth Groundwater Map, as shown on Figure 6 below.

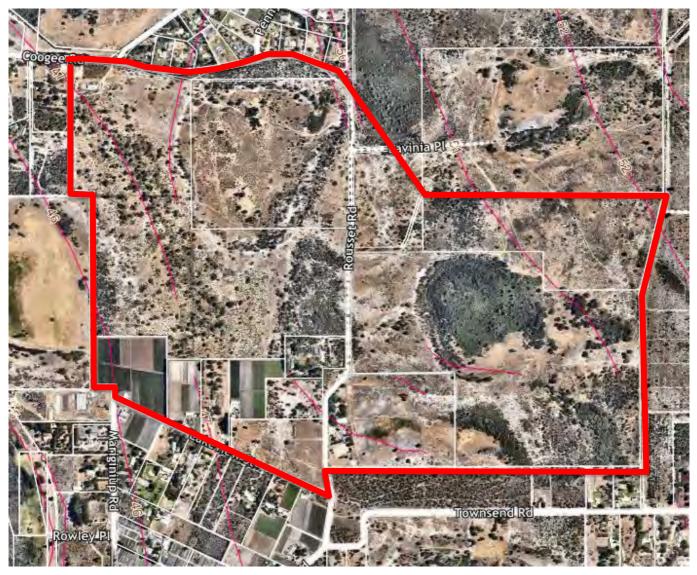


Figure 6 – Maximum Groundwater Levels (DWER, 2023)

A District Water Management Strategy (DWMS) has been prepared for the East Wanneroo District Structure Plan. This DWMS confirmed that groundwater across the EWDSP is likely to rise approximately 4-5 metres post development. This is as a result of the following:

- Water Corporation discontinuing to use their shallow aquifer bores when the site coverts from P1 to P3 to support development
- Shallow groundwater bores associated with the special residential lots are decommissioned with development and increased densities across the site
- Vegetation clearing is completed in order to support the density of the proposed development

• Groundwater recharge from drainage soakwells associated with the development, as opposed to evapotranspiration from the existing surface.

The DWMS anticipates that groundwater rise should be managed by "Controlled Groundwater Levels" and dealt with through a network of subsoil pipes gravitating to strategically located tanks and pumps that controls future groundwater levels to the pre-development levels (or existing levels). Further detail on this is included in the Local Water Management Strategy (LWMS) prepared for the LSP submission.

4. SITEWORKS & EARTHWORKS

4.1 Typical Earthwork Strategy

Siteworks for urban development typically comprise the clearing of existing vegetation and, where necessary, the earthworking of existing ground to facilitate future development.

In Perth it is often the case that the extent of siteworks is dictated by the density and nature of development and by the finished ground shape required for building houses. Increased densities and decreasing lot sizes has led to a current trend for the development areas to be fully earthworked to create level lots which are terraced utilising interallotment retaining walls.

This approach provides a number of positive outcomes:

- It reduces house building costs.
- It rationalises retaining wall layouts and designs consistent with Local Authority specifications.
- It enables lots to be terraced up natural slopes to maintain elevation and views.

The Precinct 15 LSP has been designed in accordance with the following objectives:

- To allow for the retention of existing vegetation and topography within the designated open space, chiefly along the elevated ridge line in the western parts of the precinct and within the large central wetland of the eastern precinct
- To allow for roads and development sites to be graded to best follow the existing topography and to best reflect the existing landscape.

A preliminary earthworks design has been prepared for the Precinct 15 LSP area and is presented in Appendix A in Drawing 6496-LSP1-SK290. This design generally allows for the retention of vegetation along the elevated ridge line in the western parts of the precinct and within the large central wetland of the eastern precinct, and maintaining a cut-fill balance west of the rail line site to make best use of Basic Raw Materials (BRM) and to minimise the need to import fill to the site east of the rail line.

4.2 Basic Raw Materials

It is preferable to minimise the importation of clean fill sand to the Site, not only to reduce costs (imported fill can typically equate to around 30% - 40% of development costs), but also to ensure the most appropriate use of basic raw materials. Considerations that have been investigated to minimise the need to import clean fill sand include the following:

- Establishing a subsoil network and creating a controlled groundwater level, this has the net effect of reducing the volume of imported material brought to a development to maintain clearance from groundwater, and also has the potential of assisting with irrigation.;
- Adopting a planning layout which is sympathetic to existing natural contours, to ensure that stormwater drainage design is optimised such that required development levels do not require excessive filling over the existing topography.

• Optimising the location of any critical sewer infrastructure (such as Waste Water Pumping Stations), to ensure that sewer controls minimise the need to fill areas of the development.

The above controls will be reviewed in further detail as part of the design process to ensure that the volume of imported fill necessary for development is minimised.

The Department of Mines and Petroleum have mapped the area as having the potential to contain deposits of sand in the south-west of the LSP area. An excerpt of the Basic Raw Materials mapping is presented below.

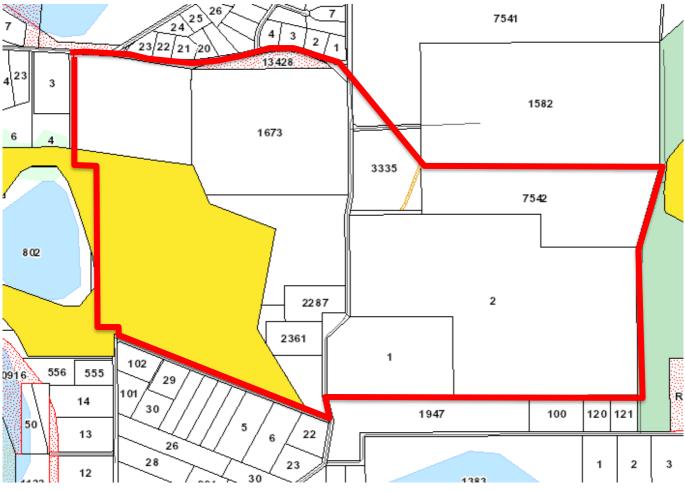


Figure 7 – Basic Raw Materials (DMIRS, 2023)

Review of the Site and historical photography confirms that the sand deposits depicted below have not previously been, nor are currently being mined. A review of the Department of Mines, Industry Regulation and Safety' publicly available data suggests that there are no live or pending mining tenements over the LSP area.

5. DRAINAGE STRATEGY

5.1 Integrated Urban Water Management

A Local Water Management Strategy (LWMS) has been prepared for the Site by Pentium as a separate document. This provides a basis for ongoing development to ensure that appropriate allowances are made for total water management including the minimisation of scheme water use and the maximisation of recharge of stormwater runoff.

Stormwater drainage management is proposed by adopting a Water Sensitive Urban Design (WSUD) approach. Objectives of WSUD include:

- Detention of stormwater rather than rapid conveyance;
- Use of stormwater to conserve potable water; .
- Use of vegetation for filtering purposes; and
- Water efficient landscaping.

For the LSP area, the main WSUD practices which should be incorporated into the ongoing implementation of the site as follows:

1.5.1 Stormwater Management

Stormwater recharge of the shallow aquifer should be maximised through the

1.5.2 Water Quality Management

The maximisation of the quality of recharge water through the adoption of "Best Management Practices", which promote the disposal of runoff via water pollution control facilities (including vegetated swales and basins, detention storage and gross pollutant traps) and the implementation of non-structural source controls (including urban design, street sweeping, community education, low fertiliser landscaping regimes, etc.).

5.2 Stormwater Collection and Management

The LSP land largely consists of free draining sand with substantial cover to the prevailing groundwater. Areas of peaty clays, may require cut-to-fill earthworks to provide adequate separation to assist infiltration at source. Overall, therefore, the land is highly suited to the implementation of the WSUD management practices outlined above.

It is anticipated that runoff within future residential allotments will be contained on-site. Stormwater disposal will be via soakwells or other infiltration facilities which form part of the building and private open space development.

Drainage from public roads and lanes can be managed in a number of ways depending on the nature of the adjacent land uses, the extent of traffic and pedestrians and the objectives for drainage management.

Runoff from storms up to 1 in 5 years ARI would be conveyed via an underground pipe system to low point infiltration basins consistent with the requirements of the City of Wanneroo.

Roads and POS will be designed to cater for the surface overflow for more severe storms with building pads constructed at least 300 millimetres above the 1 in 100 year ARI flood or storage level at any location.

The dispersion of stormwater disposal will maximise the area of recharge down through the soil profile to the shallow aquifer, thereby, maximising the potential for nutrient stripping and water quality improvements.

The LWMS details the stormwater drainage plan for the Precinct 15 LSP. The plan shows the approximate location of stormwater disposal sites based on a preliminary assessment of finished development levels.

The LWMS also includes tabulated data for areas required at each low point infiltration swale to cater for the 1 in 1 year, 1 in 5 year and 1 in 100 year ARI storms.

6. Roadworks & Footpaths

6.1 Traffic and Transportation

An assessment of the traffic and transport planning for the Precinct 15 LSP area has been undertaken by Transcore.

The results of this assessment include a recommended hierarchy for the roads within the Precinct 15 LSP area and the future subdivision development together with recommendations for public transport services, pedestrian and cyclist facilities.

In all cases the engineering review has taken account of the recommendations outlined in the Transcore report and they will be incorporated into future detailed subdivision planning and design.

6.2 Regional Roads

Joondalup Drive and Pinjar Road west of the Site are both classified as an Other Regional Road (ORR) under the Metropolitan Regional Scheme (MRS), and are the closest regional roads to the Site. On this basis, Joondalup Drive will be required to provide a regional road access function for the development until the regional road network identified in the EWDSP are constructed. For Precinct 15 this includes the Whiteman-Yanchep Highway east of the site, and connection of Lakeview Street through to highway. Additional Integrator Arterials through the EWDSP area are proposed to ultimately extend south from Precinct 15 and will also form the traffic network. The figure below show the proposed road hierarchy in the EWDSP area.

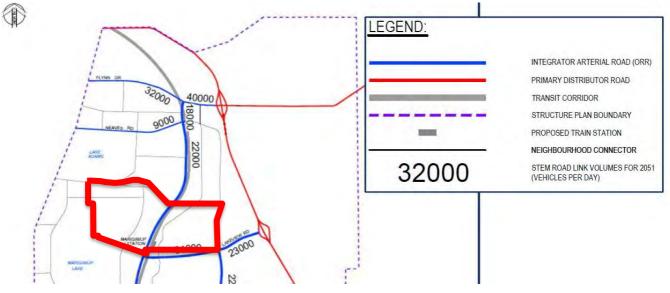


Figure 8 – East Wanneroo Higher Order Road Hierarchy (Cardno, 2019)

In the interim, Joondalup Drive provides the direct primary distributor function in the absence of the freeway.

Road access to Joondalup Drive would currently occur via connection to Coogee Road(which becomes Tumbleweed Drive) in the north, which connects onto Joondalup Drive west of the Site.

6.3 Future Development Roads

The Precinct 15 LSP area comprises a network of development roads including an Integrator Arterial Road as shown in Figure 8 above which is proposed to run parallel to the proposed rail reserve on an approximate north-south alignment through the centre of the site. This future Integrator Arterial connects to the proposed Whiteman-Yanchep Highway east of the LSP area via Lakeview Road, which is also proposed as an Integrator Arterial A Road. Figure 9 below refers.

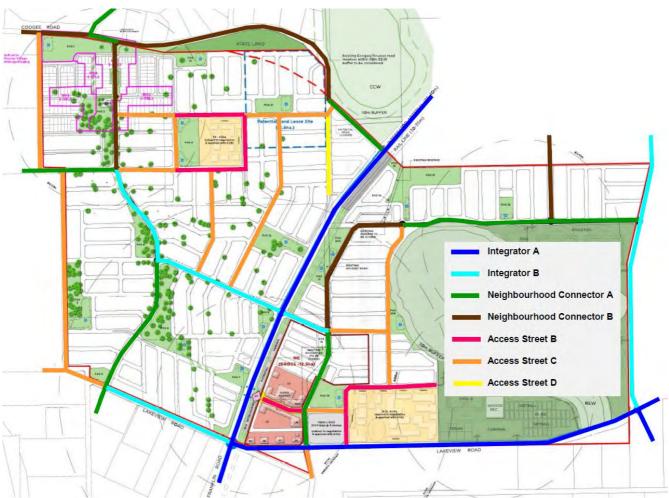


Figure 9 – Precinct 15 Road Hierarchy (Transcore, 2022)

Other Integrator Arterial Roads Neighbourhood Connectors and higher order Access Streets adjacent to and within the LSP area are shown in the Figure above. The Precinct 15 LSP proposes an urban design hierarchy for the development roads, which is an expansion of the traffic hierarchy, to better reflect the intended functions of the roads and their corresponding streetscape characters.

In all cases the road cross-sections will be designed to cater for utility services, on standard verge alignments, street trees, parking embayments where appropriate, off-street and on-street cycling lanes in accordance with the overall pedestrian and cycling network.

The engineering design of roads will be carried out to comply with the Department of Planning's Liveable Neighbourhoods recommendations for design speeds and sight distances and with the requirements of the City of Wanneroo. Roadworks will generally consist of kerbed and asphalted pavements.

In particular, it is proposed that the development roads be designed to suit lower vehicle operating speeds to ensure safer operation and improved pedestrian movement. The lower speeds on local roads will also support initiatives to adopt smaller street truncations and associated intersection curve radii where suitable.

6.4 Footpaths

Footpaths will be provided in accordance with *Liveable Neighbourhoods* and the City of Wanneroo standards and will consist of one path in every road, and shared paths in Neighbourhood Connector and other roads as outlined in the Transcore's Traffic Report accompanying the LSP.

7. WASTEWATER

The Site falls within the Water Corporation's Jandabup Sewer District as shown in *Figure 10* below.

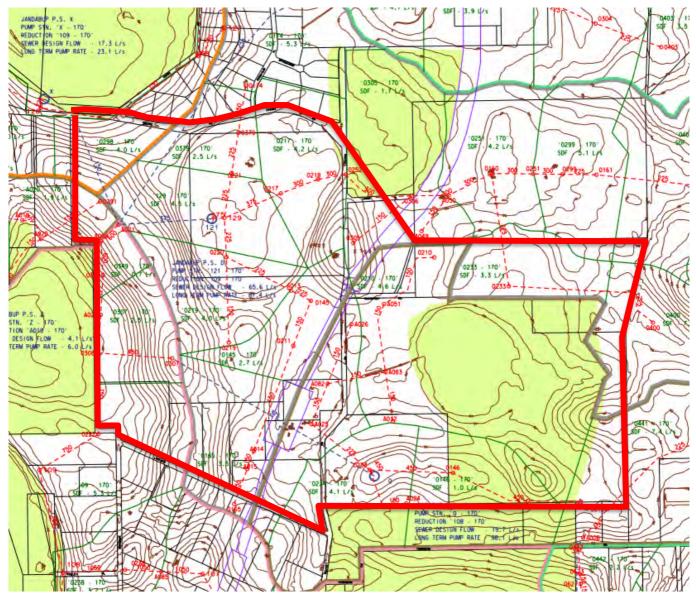


Figure 10 - Conceptual Long Term Wastewater Scheme Planning (Water Corporation, 2022)

The Water Corporation planning indicates that the Site falls within the catchment of five proposed future Waste Water Pumping Stations (WWPS).

- The north-west corner of the site within the orange catchment boundary is proposed to be serviced by the future Jandabup WWPS X, located north-west of the Site across Coogee Road and adjacent Lake Adams
- A small portion of the site along the western boundary within the grey catchment boundary is proposed to gravitate west to the future Jandabup WWPS Z located west of the Site at the eastern end of Ranch Road adjacent Little Mariginiup Lake
- Western edge of the Site within the pink catchment boundary is proposed to gravitate south via Collector Sewer to the future Jandabup WWPS A located south of the site at the southern end of Mariginiup Lake.
- The majority of the western portion of the Site & a portion of the north-eastern part of the site, defined by the grey catchment boundary, which captures wastewater flows within the site to gravitate to the proposed Jandabup WWPS D. Jandabup WWPS D would then pump flows west to the future collector sewer within the pink catchment described above for Jandabup WWPS A.
- The majority of the eastern portion of the Site, defined by the olive catchment boundary, which captures wastewater flows within the site to gravitate to the proposed Jandabup WWPS Q. Jandabup WWPS Q would then pump flows west to the future collector sewer within the pink catchment described above for Jandabup WWPS A.

It is noted that the Water Corporation's Wastewater Planning is largely based upon existing ground contour information, as there is typically no detail on the finished levels within the planning areas at the time that the planning is initially prepared.

As referenced earlier in the report, Cossill & Webley have prepared preliminary earthworks levels across the Site, which in turn has allowed the preparation of a preliminary sewer design and catchment plan. The preliminary sewer catchment plan is included as an appendix to this report.

Based upon the preliminary design levels completed, the majority of the western portion of the Site will be serviced by the Jandabup WWPS D, largely in line with the Water Corporation's Wastewater Planning. All of the eastern portion of the Site and a portion of the west will be serviced by Jandabup WWPS Q.

Along the western extremities of the Site, a portion of the NW corner of the site will likely fall into the catchment of future Jandabup WWPS X. The majority of land on the western periphery of the Site will ultimately grade out to Jandabup WWPS A.

As indicated by the Water Corporation's planning, development of the site in an ultimate sense requires the delivery of a number of higher order infrastructure items, which are not currently available, so it is likely an interim solution will be required to service the Site.

The Water Corporation has advised the existing wastewater network in proximity to the Site has a limited capacity available at a discharge point into the existing DN375 Neerabup Collector Sewer located on Joondalup Drive. The figure below shows the location of the discharge point relative to the Site.

Figure 11 – Existing Sewerage Infrastructure (Water Corporation, 2023)

It is understood that the capacity available in the existing network is in the order of 18L/s, possibly higher. This capacity would allow approximately 1300 lots to connect to the wastewater network.

In discussions with the Water Corporation, they have advised that the available capacity in the network is intended to be utilised as an initial discharge point for the first phase of the proposed Jandabup A WWPS, with the capacity to be used to service the development of Precinct's 6, 7 & 8 identified in the EWDSP. The location of these precincts is immediately west of Precinct 15 as indicated below.

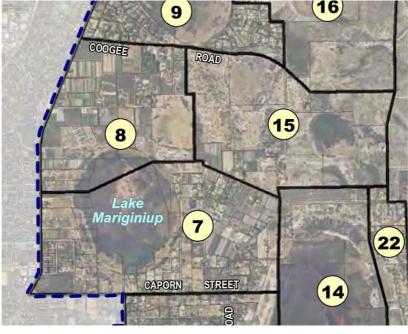


Figure 12 - EWDSP Precinct Plan (DPLH, 2021)

P:\6496 Precinct 15 East Wanneroo\6496-00\Correspondence\Precinct 15 East Wanneroo Mariginiup Local Structure Plan Engineering Report - Feb 23 Rev A.docx 19

As can be seen in the Figure above, the nature of the existing landholdings within Precincts 6 – 8 is quite fragmented. Precinct 15 includes far less individual landholdings, with the majority of Precinct 15 held by a single proponent. The consolidated nature of existing landholdings within Precinct 15 in conjunction with the fact a single major proponent controls the majority of the landholdings within the Precinct means that the delivery of the development from the planning through to construction is much more likely to occur in a timely manner.

It has been confirmed that there is existing capacity within the network nearby. An interim connection to the existing network is physically possible from Precinct 15, and would allow progression of the development in the area whilst the necessary planning and implementation of upgrades required to the existing network for additional capacity is undertaken concurrently by the Water Corporation to ensure that the balance of the EWDSP area can be delivered unimpeded as it progresses.

8. WATER RETICULATION

8.1 Water Resources

Precinct 15 is within the Water Corporation's water licence area. Precinct 15 is proposed to be serviced with water from the Wanneroo Reservoir tank site located on Steven Street in Wanneroo. This tank is currently fed from the existing Wanneroo Groundwater Treatment Plant (GWTP) located to the east of the Precinct 15 as presented in the Figure below.

Ultimately, an additional bore main from the GWTP to the Wanneroo Reservoir is proposed, which will be augmented via a new supply from the proposed Alkimos Desalination plant. From discussions with the Water Corporation the route of the proposed desalination trunk main is still at a planning stage, and a route external to the EWDSP area is under consideration.

As part of the consideration of future development of the EWDSP area, the Water Corporation has completed high level planning over the EWDSP which has determined that a series of large volume trunk mains connecting the Wanneroo Reservoir to other regional water storage facilities within the Integrated Water Supply Scheme will be required as development progresses. The construction of these mains will be deferred until such time as water supply demand requires the Water Corporation to construct the mains. The optimal route for the construction of these mains will be assessed by the Water Corporation ahead of delivery of the mains, and will consider development within the EWDSP at that point in time. Within the Precinct 15 area, should distribution mains be required they will likely follow routes of higher order roads where there is a greater reserve width which more readily accommodates retrofit of infrastructure.

There is existing water infrastructure west of the Precinct 15 area at the intersection of Coogee Road and Mornington Drive that includes both larger reticulation mains as well as a distribution main. Connection to the existing network should provide adequate water supply to allow initiation of development in the area.

9. POWER SUPPLY

There is an existing high voltage underground power cable in Coogee Road which extends power from the existing "Wanneroo Zone Substation" located at the intersection of Wanneroo Road and Clarkson Ave west of Precinct 15. There is 25 to 30MVA projected to be available from this sub-station, which will be sufficient to service future development of Precinct 15.

It is anticipated that the local network will be incrementally extended from the existing HV feeder located in Coogee Road into Precinct 15. A series of HV feeds, switch stations and transformers will be required throughout Precinct 15 to meet individual site requirements.

Figure 13 – Network Capacity and Existing Overhead Powerlines (Western Power)

10. TELECOMMUNICATIONS

The Site is within NBN's fixed line footprint, and hence can be serviced with optic fibre under their roll-out scheme for greenfield developments.

Under the Federal Government's Telecommunications in New Developments Policy, developers are responsible for contributing to the cost of delivering the NBN[™] network in new developments. This includes contributing to part of the costs of the build (civils and any backhaul required) as well as a \$600 per lot deployment change.

Through the NBN, the ownership issues of delivering the wholesale fibre to the home system have been transferred to the Government with more than 100 retail service providers offering services over the network. There are other private telecommunication providers that can also offer similar services.

Developers of new residential estates have the option to pay NBN or an alternative service provider for provision of a high speed broadband network. In either case the developer will install pit and pipe infrastructure that can accommodate a future high speed broadband network.

The current design practice for road reserves, pavement and verge provisions will make adequate allowance for services including broadband in accordance with the agreed Utilities Service Providers handbook. There will be some local land requirements for equipment sites, similar to current provisions which will be accommodated at detailed subdivision stage.

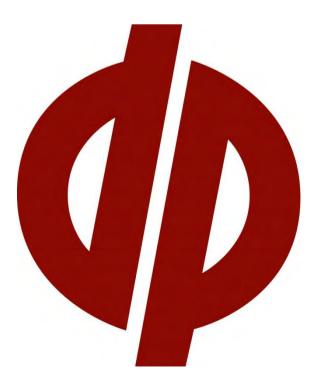
11. CONCLUSION

The Precinct 15 LSP area has planned strategies for water and sewerage supply and other public utility services are available or can be extended to service the proposed urban area.

There are no engineering impediments to the development, though co-ordination and co-operation with the relevant Service Authorities will be required as the development progresses.

Appendix A

Report on Preliminary Geotechnical Investigation – Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA



Report on Preliminary Geotechnical Investigation

Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

> Prepared for Stockland Development Pty Ltd

> > Project 212040.00 October 2022

Document History

Document details

Project No.	212040.00	Document No.	R.001.Rev0	
Document title	Report on Preliminary Geotechnical Investigation			
	Proposed Residential Development			
Site address	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA			
Report prepared for	Stockland Development Pty Ltd			
File name	212040.00.R.001.Rev0.DP Report - Lot 803 Coogee Road and Lot 1673			
File name	Rousset Road, Mariginiup, WA.docx			

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Brendan Divilly	Dan Reaveley & Frederic Verheyde	7 October 2022

Distribution of copies

Electronic	Paper	Issued to
1	-	Mr Mathew Johns, Stockland Development Pty Ltd
	Electronic 1	1

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	BRing	7 October 2022
Reviewer	F. L- y1.	7 October 2022

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 36 O'Malley Street Osborne Park WA 6017 Phone (08) 9204 3511

Table of Contents

Page

1.	Introduction1						
2.	Site Description2						
3.	Field Work Methods2						
4.	Field \	Work Results	3				
	4.1	Ground Conditions	3				
	4.2	Groundwater	5				
	4.3	Permeability	5				
5.	Labor	atory Testing	6				
6.	Propo	osed Development	6				
7.	Comm	nents	7				
	7.1	Site Suitability	7				
	7.2	Site Classification	7				
	7.3	Excavation Conditions	7				
	7.4	Geotechnical Suitability for Re-Use of In Situ Materials					
		7.4.1 Re-Use of Natural Sand					
		7.4.2 Topsoil					
	7.5	Site Preparation					
		7.5.2 Proof Rolling and Compaction					
		7.5.3 Imported Fill					
		7.5.4 Fill Placement	.10				
		7.5.5 Compaction Testing					
	7.6	Foundation Design	.10				
	7.7	Design Parameters for Excavations and Retaining Systems					
		7.7.1 Safe Batter Slopes7.7.2 Retaining Structures					
	7.8	Pavement Design Parameters					
	7.9	7.9 Stormwater Drainage and Permeability					
	7.10 Further Investigation						
8.	Refere	ences	.12				
9.	Limita	itions	.12				

Appendix A: About This Report

Appendix B:	Drawings
	Test Pit Logs
	CPT Results
	Borehole Logs
Appendix C:	Laboratory Test Certificates

Report on Preliminary Geotechnical Investigation Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

1. Introduction

This report presents the results of a preliminary geotechnical investigation undertaken for a proposed residential development at Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA. The investigation was commissioned in an email dated 16 June 2022 by Mr Mathew Johns of Stockland Development Pty Ltd and was undertaken in accordance with Douglas Partners' proposal P212040.00.P.001.Rev1 dated 5 May 2022.

It is understood that the proposed development will comprise a residential subdivision, including lots, pavement, wastewater pump station, services and public open space.

The aim of the investigation was to assess the subsurface soil and groundwater conditions across the site in order to provide preliminary comments on:

- The suitability of the site for urban development, from a geotechnical standpoint;
- The extent of uncontrolled fill, rock, peaty soils and depth of topsoil, where encountered;
- Excavation conditions and depths of available sand for re-use, where encountered;
- The suitability of site soils as fill, including advice regarding the preparation, placement and compaction of topsoil and sand, including the suitability of the use of topsoil by blending with clean sand for use as structural fill;
- Site preparation, compaction, remediation and earthworks to allow for urban development;
- A preliminary site classification in accordance with AS 2870-2011;
- Geotechnical design parameters for retaining wall design and foundation design, including soil friction angle and allowable bearing capacity;
- Suitable design parameters for pavements, including a suitable California bearing ratio (CBR) for the subgrade encountered at the site and provide comments on road construction;
- The permeability of shallow soils and the suitability of the site to accept on-site stormwater disposal;
- The groundwater level and perched water table levels beneath the site at the time of the field work, if encountered; and
- Recommendations for further geotechnical investigation.

The investigation included five cone penetration tests (CPT), the excavation of 51 test pits, seven in situ infiltration tests and laboratory testing of selected samples. The details of the field work are presented in this report, together with comments and recommendations on the items listed above.

2. Site Description

The site comprises an area, approximately 124 ha in size, identified as Lot 803 Coogee Road and Lot 1673 Rousset Road in Mariginiup, WA. It is bordered by Rousset Road to the east, Coogee Road and undeveloped land to the north, and rural residential properties and market gardens along all other boundaries (Refer to Drawing 1, Appendix B).

At the time of the field work, the site was generally vacant and was covered in sparse bushland and cleared areas, except for the north-west corner of the site which included a large shed, some sea containers and hardstand area. Vegetation generally comprised medium to large sized trees, shrubs and short grass.

Based on publicly available LiDAR data, the ground surface level across the site varies between approximately RL 46 m AHD and RL 59 m AHD.

The Muchea 1:50,000 Environmental Geology sheet indicates that shallow sub surface conditions across the western half of the site consist of sand derived from Tamala Limestone, while the eastern half consists of Bassendean Sand and peaty clay associated with swamp deposits.

The Perth Groundwater Atlas indicates that the groundwater level ranged between approximate levels of RL 43 m AHD and RL 45 m AHD in May 2003, approximately 2 m to 15 m below existing surface levels.

Published acid sulfate soil risk mapping indicates the western half of the site is located in an area mapped as "no known risk of acid sulfate soils occurring within 3 m of natural soil surface". The eastern half of the site has areas mapped as both "high to moderate risk of acid sulfate soils occurring within 3 m of natural soil surface" and "moderate to low risk of acid sulfate soils occurring within 3 m of natural soil surface. The areas mapped as "high to moderate" risk are associated with the peaty clay swamp deposits as depicted by the published geological mapping.

3. Field Work Methods

Field work for the investigation was carried out on 5 and 7 July 2022 and comprised:

- The excavation of 51 test pits (Locations 1 to 50 and 1A).
- Perth sand penetrometer (PSP) testing adjacent to each test pit location.
- CPT at five locations (51 to 54 and 54A).
- Seven in situ infiltration tests (Locations 55 to 61).

The test pits were excavated to a maximum depth of 2.7 m using an 8-tonne backhoe, equipped with a 450 mm wide toothed bucket. PSP tests were carried out at the test pit locations in accordance with AS 1289.6.3.3 to assess the in-situ density of the shallow soils.

Each test pit was logged in accordance with AS 1726–2017 by a suitably experienced engineer from Douglas Partners. Soil samples were recovered from selected locations for subsequent laboratory testing.

The infiltration tests were performed using the falling head method at depths of between 0.5 m and 1.5 m at locations 55 to 61.

Test locations were determined using a handheld GPS and are marked on Drawing 3. Approximate ground surface levels at the test locations have been derived from publicly available LiDAR data (DEM derived from 5 m grid).

4. Field Work Results

4.1 Ground Conditions

Logs of the ground conditions and results of the field testing are presented in Appendix B, together with notes defining descriptive terms and classification methods, in Appendix A.

Ground conditions across the site generally comprised:

- **Topsoil (SAND and ORGANIC SAND SP and SP-SM)** dark grey-brown sandy and organic sandy topsoil, trace silt to with silt, between 0.06 m and 0.2 m thick at all test locations except 1, 1A and 59.
- Localised FILL (Gravelly SAND and SAND SP-SM) fine to medium grained, pale yellow-brown and brown gravelly sand and sand fill, with silt, to a depth of 0.3 m at locations 1 and 1A. The fill at location 1A included various waste materials including demolition rubble. domestic refuse and organic material.
- SAND (SP and SP-SM) fine to medium grained, grey and yellow-brown sand, trace silt to with silt underlying the topsoil and fill, to termination depths of between 0.5 m and 2.7 m at the test pit locations and to termination depths of up to 10 m at the CPT locations (except at CPT54 where cemented material was encountered at depth, as discussed further below). The sand was generally in a loose and loose to medium dense condition, becoming medium dense at depth. The depth and level of the base of the loose and loose to medium dense soils encountered at the test locations are shown in Table 1.
- Localised Cemented Soils (Silty SAND and Silty ORGANIC SAND SM) dark brown cemented silty sand and cemented silty organic sand, to a depth of 0.6 m at location 9 and to a termination depth of 1.25 m at location 21. The cemented silty organic sand at location 21 was moderately to strongly cemented.

Some inferred cemented material (possibly weakly to moderately cemented sand or very low to low strength limestone) was encountered below about 6 m depth at CPT54.

The ground conditions at the location of the proposed temporary sewer pump station (location 53) comprised loose to medium dense sand to 1.5 m, overlying medium dense sand to 6.4 m and dense sand to a termination depth of 10.2 m.

Table 1: Summary of Depth and Level of Base of Loose and Loose to Medium Dense Soils

Test Location	Ground Surface Level ^[1] (m AHD)	Depth of Loose and Loose to Medium Dense Soil (m)	Level of Base of Loose and Loose to Medium Dense Soil ^[2] (m AHD) 50.7	
2	51.6	0.9		
3	51.9	1.15	50.8	
8	48.6	1.3	47.3	
14	49.9	0.9	49.0	
15	54.7	1.15	53.5	
16	53.7	1.05	52.6	
17	57.1	1.8	55.3	
18	53.9	1.15	52.7	
22	51.9	1.25	50.6	
24	48.3	0.45	47.8	
26	46.9	0.75	46.1	
27	52.0	0.45	51.5	
28	57.8	0.9	56.9	
30	49.2	0.9	48.3	
32 54.9		1.3	53.6	
33 48.2		1.25	46.9	
35 50.8		1.2	49.6	
36 48.2		1.05	47.1	
37 50.2		1.05	49.1	
38 51.3		1.05	50.2	
39 55.1		1.45	53.6	
40 56.1		1.15	54.9	
41	47.7	1.05	46.6	
42	2 50.7 0.75		49.9	
45	48.1	0.75	47.3	
46	58.7	1.15	57.5	
47	54.5	1.7	52.8	
49	52.9	0.9	52.0	
50	48.5	1.15	47.3	
51	58.9	2.9	56.0	
52	59.3	2.4	56.9	
53	45.9	1.5	44.4	
54	59.5	4.5	55.0	
54A	59.3	4.0	55.3	

Test Location	Ground Surface Level ^[1] (m AHD)	Depth of Loose and Loose to Medium Dense Soil (m)	Level of Base of Loose and Loose to Medium Dense Soil ^[2] (m AHD)
55	46.9	Deeper than 1.05	Less than 45.8
58	48.6	Deeper than 1.05	Less than 47.5
59	46.2	0.45	45.7

Notes for Table 1:

[1]: Approximate surface level derived from LiDAR data.

[2]: Level of Base of Loose Soils = Estimated Surface Level – Depth of Loose Soils. Levels should be considered as approximate.

4.2 Groundwater

Groundwater was observed within CPT53 at a depth of 3 m (RL 42.9 m AHD) on 7 July 2022. Groundwater was not encountered at the remainder of the test pits or CPT undertaken between 5 and 7 July 2022. The test pits were immediately backfilled following sampling, which precluded longer-term monitoring of groundwater levels.

It should be noted that groundwater levels are affected by climatic conditions and land usage and will therefore vary with time.

4.3 Permeability

Seven in-situ permeability tests using the falling head method were carried out between depths of between 0.5 m and 1.5 m at locations 55 to 61. An estimated permeability value has been derived from the in situ test data using a formula based on a calculation by Hvorslev (1951). Results of the permeability analysis are summarised in Table 2.

Test Location	Depth (m)	Measured Permeability (m/day) ^[1]	In situ Ground Conditions at Testing Depth
55	0.5	>20	SAND SP, trace silt, loose to medium dense
56	0.5	7	SAND SP, trace silt, medium dense
57	0.5	13	SAND SP, trace silt, medium dense
58	0.5	>20	SAND SP, trace silt, loose
59	0.5	>20	SAND SP, trace silt, medium dense
60	1.5	>20	SAND SP, trace silt, medium dense
61	0.5	>20	SAND SP, trace silt

Table 2: Summary of Permeability Analysis

5. Laboratory Testing

A geotechnical laboratory testing programme was carried out by a NATA registered laboratory and comprised the determination of

- the particle size distribution of ten samples; and
- the organic content of eight samples.

The test report sheet is given in Appendix C and the results are summarised in Table 3.

Test Location	Depth (m)	Fines (%)	Sand (%)	Gravel (%)	Organic Content (%)	Material
1A	0.4	4	96	0	1.4	SAND SP, trace silt
3	0.1	3	97	0	1.4	TOPSOIL / SAND SP, trace silt and organics
6	0.1	7	92	1	5.2	TOPSOIL / ORGANIC SAND SP-SM, with silt
18	0.1	4	96	0	2.7	TOPSOIL / ORGANIC SAND SP, trace silt
21	1.0	-	-	-	5.9	Cemented Silty ORGANIC SAND
26	0.45	5	95	0	1.5	SAND SP, trace silt
27	0.1	-	-	-	2.4	TOPSOIL / ORGANIC SAND SP-SM, with silt
36	0.1	3	97	0	1.3	TOPSOIL / SAND SP, trace silt and organics
55	0.5	1	99	0	-	SAND SP, trace silt
56	0.5	4	96	0	-	SAND SP, trace silt
57	0.5	4	96	0	-	SAND SP, trace silt
59	0.5	2	98	0	-	SAND SP, trace silt

Table 3: Results of Laboratory Testing for Soil Identification

Where:

Fines = Particles finer than 75 μ m.

Sand = Particles between 2.36 mm and 75 μ m.

Gravel = Particles larger than 2.36 mm.

6. Proposed Development

It is understood that the proposed development will consist of a residential subdivision, with associated lots, wastewater pump station, services, pavements, and public open space. Earthworks across the site are likely to comprise large cut to fill operations.

7. Comments

7.1 Site Suitability

The investigation indicates that the site is generally underlain by topsoil and sand as described in Section 4.1 above. In addition to the above, the testing across the site encountered an isolated area of uncontrolled fill at locations 1 and 1A, some surficial loose sandy soils and an isolated layer of cemented silty organic sand (location 21). The uncontrolled fill and layer of cemented silty organic sand is likely to require further assessment and delineation.

The encountered loose sand and buried cemented silty organic sand are geotechnical constraints that will require consideration in the earthworks strategy for the site.

However, it is considered that following suitable site preparation, the site is generally suitable for the proposed residential development. Suitable site preparation should include the excavation and removal of uncontrolled fill, removal or blending of the surficial topsoil, possible removal of the encountered buried cemented silty organic sand and suitable compaction of the loose soils across the site.

The ground conditions at the location of the proposed temporary sewer pump station (location 53) comprise sand and are considered geotechnically suitable. Groundwater was encountered at a depth of 3 m at this location, so dewatering will be required during construction.

Therefore, from a geotechnical standpoint, the land is physically capable of development, provided that the provisions outlined in the subsequent subsections of the report are incorporated in the development plans.

7.2 Site Classification

The shallow ground conditions beneath the site generally comprise loose sand, becoming medium dense with depth.

Based on the results of the investigation and in accordance with AS 2870-2011, a site classification 'Class P' applies to the site, owing to the presence of uncontrolled fill, loose sand and buried organic soils. It is considered that following suitable site preparation, the site could be re-classified as 'Class A'. Suitable site preparation includes in particular excavation and removal of uncontrolled fill, stripping or blending of the surficial topsoil, removal of any buried organic soils (eg location 21) and suitable compaction of all loose soils encountered across the majority of the site.

7.3 Excavation Conditions

The encountered ground conditions generally comprise sand. Conventional earthmoving equipment (such as large excavators and scrapers) should be generally suitable for excavations across the site within the encountered granular soils.

The cemented silty organic sand encountered at location 21 resulted in test pit refusal using an 8-tonne backhoe. It is anticipated that large excavators will be required to excavate cemented materials, with associated low excavation rates.

7.4 Geotechnical Suitability for Re-Use of In Situ Materials

7.4.1 Re-Use of Natural Sand

The encountered shallow natural sand with trace fines, classified 'SP' in the logs in Appendix B, is considered geotechnically suitable for reuse as structural fill material provided it is free from organic matter and particles greater than 150 mm in size.

Isolated areas of the site which include sand with fines (classified as SP-SM), generally underlying the topsoil, would also be considered suitable for re-use as fill, however, with possibly a lower permeability than typically specified in general earthworks specifications (5 m/day). Therefore, if reusing the sand with fines is further considered, a detailed assessment of the permeability of these soils is recommended to assess any impact on its reuse with regards to drainage characteristics.

7.4.2 Topsoil

Topsoil was encountered across the site to depths of between 0.06 m and 0.2 m.

Based on the results of the investigation, the topsoil encountered across the site is generally considered suitable for reuse as part of a topsoil and clean sand blend, for use as a structural filling material, provided that the topsoil is suitably prepared, and the controls outlined below are adopted. A preliminary blending ratio of 3:1 (clean sand:topsoil) is suggested, based on observations made during the site investigation and the laboratory results regarding organic content.

It is suggested that any large roots or other oversized organics are first removed or screened from the topsoil/organic sand, prior to blending. Stripping the topsoil and passing through a mechanical screening plant is suggested.

Following screening, topsoil should be sufficiently mixed and blended with clean sand so that it forms a generally homogenous material. The use of earthwork plant to suitably turn over the two materials to form a blended material is recommended. The blending process should be assessed by a geotechnical engineer.

The blending of topsoil with clean sand will likely decrease the permeability of the sand, therefore some consideration should be given to possible adverse implication on site drainage, if blended topsoil material is used as fill material across the site. Consideration could be given to further assess the permeability of blended topsoil material at various blending ratios, to assess a suitable blending ratio and associated filling permeability. Douglas Partners would be pleased to further assist with this assessment if required.

7.5 Site Preparation

7.5.1 Site Stripping

All deleterious material, including vegetation, uncontrolled fill (locations 1 and 1A) and topsoil (if not blended,) should be stripped from the proposed development areas of the site.

Any tree roots remaining from clearing operations within the proposed development area should be completely removed to a depth of 0.6 m, and the excavation backfilled with material of similar geotechnical properties to the surrounding ground and suitably compacted.

Further assessment of the buried cemented silty organic sand at location 21 is suggested to determine if this material is suitable to remain in situ, or if it requires removal. The occurrence of similar material elsewhere beneath the site cannot be precluded at this stage and therefore further geotechnical field assessment at a relatively high testing frequency during detailed design of the proposed development should be considered to assess the occurrence of otherwise of such material across the proposed development area.

7.5.2 **Proof Rolling and Compaction**

Following the site stripping (Section 7.5.1), and excavation to formation level (in areas of cut) it is recommended that the exposed ground be proof rolled with a heavy smooth drum roller (say minimum 15 tonnes deadweight) in vibrating mode.

Any areas that show signs of excessive deformation during compaction should be compacted until deformation ceases or, alternatively, the poor-quality material should be excavated and replaced with suitable structural fill and compacted.

Owing to the depth of loose sand across the site, it is suggested that significant compactive effort using heavy vibrating rollers (say 16 tonne minimum) is applied to the subgrade following stripping. Although the depth of loose soils is up to 4.5 m, based on the proposed earthworks plan, these locations are in areas of significant cut (cuts up to 9 m deep), and as such the loose sands may not impact the development following earthworks.

Following proof rolling to confirm suitable foundation material, the site should be tested using a Perth Sand Penetrometer (PSP) to a depth of 2 m below formation level, or shallower refusal, by a suitably experienced geotechnical engineer.

Compaction control of sand could be carried out using a PSP test in accordance with test method AS 1289.6.3.3. All areas within proposed building and pavement envelopes should be compacted to achieve a minimum blow count of 8 blows per 300 mm penetration to a depth of not less than 1.0 m below foundation level.

7.5.3 Imported Fill

If required, imported fill should comprise free draining, cohesionless, well graded sand that:

- contains less than 5% by weight of particles less than 75 microns in size;
- contains no particles greater than 150 mm in size; and
- is free of organic and other deleterious materials.

It is recommended that test certificates are reviewed and approved by the geotechnical engineer prior to importing material to site.

Other materials could be considered, provided they are granular and non-reactive, and following review by a geotechnical engineer.

7.5.4 Fill Placement

Any fill should be placed in layers not exceeding 300 mm loose thickness and compacted near optimum moisture content with a roller of say 15 tonne deadweight.

7.5.5 Compaction Testing

Sand fill should be compacted to 95% relative to modified maximum dry density (MMDD). Compaction control of the sand fill could be carried out using a Perth sand penetrometer (PSP) test in accordance with test method AS 1289.6.3.3. All areas within the proposed building and pavement envelopes should be compacted to achieve a minimum blow count of 8 blows per 300 mm penetration to a depth of not less than 1.0 m below foundation or subgrade level, or a correlation between MMDD and PSP blow counts should be established to determine the compaction target.

The top 300 mm in the base of any excavation should be re-compacted using a vibratory plate compactor prior to construction of any footings. Inspection of footing excavations by a geotechnical engineer is also recommended.

7.6 Foundation Design

Shallow foundation systems comprising slab, pad and strip footings should be suitable to support typical one and two storey residential buildings.

Footings of buildings covered by AS 2870-2011 should be designed to satisfy the requirements of this standard for the site classification discussed in Section 7.2, provided that site preparation is carried out in accordance with Section 7.5.

If a proposed building is not covered by AS 2870-2011 then the foundation should be designed using engineering principles. Following suitable site preparation and densification of the loose sand across the site, a presumptive allowable bearing pressure of 200 kPa is considered suitable for pad footings up to 3 m in width, or strip footings up to 1.5 m wide, founded at a minimum depth of 0.5 m in sandy soils that are at least medium dense. This should ensure that total and differential settlements are less than 20 mm.

The majority of the settlement indicated above is anticipated to occur as loads are applied during construction. Further long-term settlements are likely to be less than half of the settlement estimated above.

Douglas Partners can provide additional analysis if required once footing specifics are finalised.

The base of any foundation excavation should be compacted and assessed by a geotechnical engineer.

7.7 Design Parameters for Excavations and Retaining Systems

7.7.1 Safe Batter Slopes

It is recommended that batter slopes not steeper than 1.5H:1V (horizontal : vertical) be adopted for temporary excavations not deeper than 3 m in sand material above groundwater. For deeper excavations (above groundwater), average batter slopes not steeper than 2H:1V should be adopted, with horizontal benches at least 1 m wide at 3 m intervals in height. These recommended batter angles should be re-assessed if loads are to be applied near the top of the batter or if there is a possibility of substantial overland water flow. Permanent batter slopes should not be steeper than 2H:1V.

The above safe batter slope angles are not suitable below groundwater, under which case dewatering or the use of positive excavation supports (next section) should be considered.

7.7.2 Retaining Structures

The design of flexible or rigid walls should be undertaken using a triangular pressure distribution and the earth pressure parameters given in Table 4. In addition to the soil pressure, wall design should also allow for external loads such as buildings, live loads, hydrostatic pressure or construction activities.

Soil Type	Soil Unit Weight Above Water Table γ (kN/m ³)	Drained Angle of Friction Φ' (Degrees)	Undrained Shear Strength C _U (kPa)	Coefficient of Earth Pressure – Active Ka	Coefficient of Earth Pressure – at Rest K ₀	Coefficient of Earth Pressure – Passive K _p
Sand - loose	18	28	0	0.36	0.53	2.7
Sand – medium dense	20	32	0	0.31	0.47	3.2

 Table 4: Soil Parameters for Retaining Wall Design

7.8 Pavement Design Parameters

As noted in Section 4.1, the shallow soils across the site generally comprise sand. Based on field observations and Douglas Partners' experience, a preliminary subgrade CBR of 12% is recommended for the design of flexible pavements founded on sand subgrade, provided that such subgrade is compacted to achieve a dry density ratio of not less than 95% relative to modified compaction.

7.9 Stormwater Drainage and Permeability

The results of the permeability testing in Section 4.3 indicate a field permeability value of between 7 m/day and greater than 20 m/day for the shallow sand across the site.

Observed ground conditions and permeability results indicate that on-site stormwater disposal using soakwells and sumps is generally feasible into the encountered sand trace fines (classified 'SP' on the logs in Appendix B) where ground conditions at the base of such systems comprise sand and there is sufficient clearance above groundwater and any impervious layers such as cemented sand. A minimum clearance of 0.5 m is suggested between the base of drainage systems and groundwater, organic sand or cemented sand.

The infiltration capability of sand often reduces over time due to silt build up at the base of soakwells and sumps, and therefore such systems should be regularly maintained.

7.10 Further Investigation

It is suggested that further investigation by way of test pits is undertaken in the vicinity of location 21 to determine the extent of the buried cemented organic soils and to further characterise the material properties. Depending on the results of this assessment (for instance if the material is assessed to be unsuitable to be left in place), further test pitting across the site might be recommended in order to assess whether similar unsuitable material occurs elsewhere beneath the site, as previously discussed in Section 5.1.

8. References

AS 1289.6.3.3. (1997). *Methods for testing soils for engineering purposes - Soil strength and consolidation tests - Determination of the penetration resistance of a soil - Perth sand penetrometer test.* Reconfimed 2013: Standards Australia.

AS 1726. (2017). Geotechnical Site Investigations. Standards Australia.

AS 2870. (2011). Residential Slabs and Footings. Standards Australia.

Department of Environment. (2004). Perth Groundwater Atlas, Second Edition, Dec 2004.

Hvorslev, M. J. (1951). *Time lag and soil permeability in groundwater observations.* US Army Corps of Engineers Waterways Experiment Observation Station, Bulletin 36, Vicksburg, Mississippi.

9. Limitations

Douglas Partners (DP) has prepared this report for this project at Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA in accordance with DP's proposal dated 5 May 2022 and acceptance received from Mr Mathew Johns dated 16 June 2022. The work was carried out under an Agreement

dated 10 August 2022. This report is provided for the exclusive use of Stockland Development Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

Douglas Partners Pty Ltd

Appendix A

About This Report

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Cone Penetration Tests

Introduction

The Cone Penetration Test (CPT) is a sophisticated soil profiling test carried out in-situ. A special cone shaped probe is used which is connected to a digital data acquisition system. The cone and adjoining sleeve section contain a series of strain gauges and other transducers which continuously monitor and record various soil parameters as the cone penetrates the soils.

The soil parameters measured depend on the type of cone being used, however they always include the following basic measurements

 q_{c}

 f_s

i

7

- Cone tip resistance
- Sleeve friction
- Inclination (from vertical)
- Depth below ground

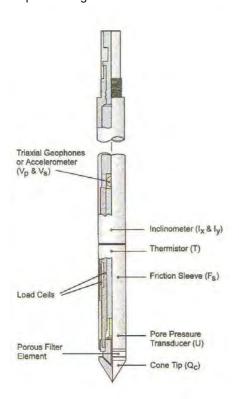


Figure 1: Cone Diagram

The inclinometer in the cone enables the verticality of the test to be confirmed and, if required, the vertical depth can be corrected.

The cone is thrust into the ground at a steady rate of about 20 mm/sec, usually using the hydraulic rams of a purpose built CPT rig, or a drilling rig. The testing is carried out in accordance with the Australian Standard AS1289 Test 6.5.1.

Figure 2: Purpose built CPT rig

The CPT can penetrate most soil types and is particularly suited to alluvial soils, being able to detect fine layering and strength variations. With sufficient thrust the cone can often penetrate a short distance into weathered rock. The cone will usually reach refusal in coarse filling, medium to coarse gravel and on very low strength or better rock. Tests have been successfully completed to more than 60 m.

Types of CPTs

Douglas Partners (and its subsidiary GroundTest) owns and operates the following types of CPT cones:

Туре	Measures
Standard	Basic parameters (q _c , f _s , i & z)
Piezocone	Dynamic pore pressure (u) plus basic parameters. Dissipation tests estimate consolidation parameters
Conductivity	Bulk soil electrical conductivity (σ) plus basic parameters
Seismic	Shear wave velocity (V _s), compression wave velocity (V _p), plus basic parameters

Strata Interpretation

The CPT parameters can be used to infer the Soil Behaviour Type (SBT), based on normalised values of cone resistance (Qt) and friction ratio (Fr). These are used in conjunction with soil classification charts, such as the one below (after Robertson 1990)

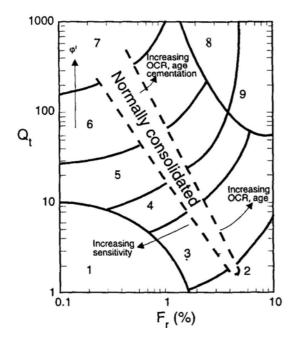


Figure 3: Soil Classification Chart

DP's in-house CPT software provides computer aided interpretation of soil strata, generating soil descriptions and strengths for each layer. The software can also produce plots of estimated soil parameters, including modulus, friction angle, relative density, shear strength and over consolidation ratio.

DP's CPT software helps our engineers quickly evaluate the critical soil layers and then focus on developing practical solutions for the client's project.

Engineering Applications

There are many uses for CPT data. The main applications are briefly introduced below:

Settlement

CPT provides a continuous profile of soil type and strength, providing an excellent basis for settlement analysis. Soil compressibility can be estimated from cone derived moduli, or known consolidation parameters for the critical layers (eg. from laboratory testing). Further, if pore pressure dissipation tests are undertaken using a piezocone, in-situ consolidation coefficients can be estimated to aid analysis.

Pile Capacity

The cone is, in effect, a small scale pile and, therefore, ideal for direct estimation of pile capacity. DP's in-house program ConePile can analyse most pile types and produces pile capacity versus depth plots. The analysis methods are based on proven static theory and empirical studies, taking account of scale effects, pile materials and method of installation. The results are expressed in limit state format, consistent with the Piling Code AS2159.

Dynamic or Earthquake Analysis

CPT and, in particular, Seismic CPT are suitable for dynamic foundation studies and earthquake response analyses, by profiling the low strain shear modulus G_0 . Techniques have also been developed relating CPT results to the risk of soil liquefaction.

Other Applications

Other applications of CPT include ground improvement monitoring (testing before and after works), salinity and contaminant plume mapping (conductivity cone), preloading studies and verification of strength gain.

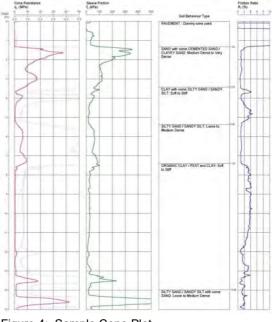


Figure 4: Sample Cone Plot

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soi	Is (>35% fine	s)
Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace sand

In coarse grained soils (>65% coarse)

- with clays or silts	5	
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils (>65% coarse) - with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

,

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.
 - Soil tends to stick together. Sand forms weak ball but breaks

easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

A·A·A·A A.A.A.A	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Clay

Peat

Silty clay

Sandy clay

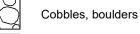
Gravelly clay

Shaly clay

Silt

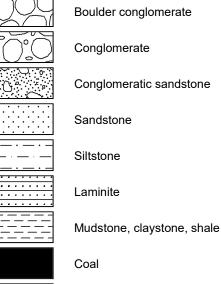
Clayey silt

Sandy silt


Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

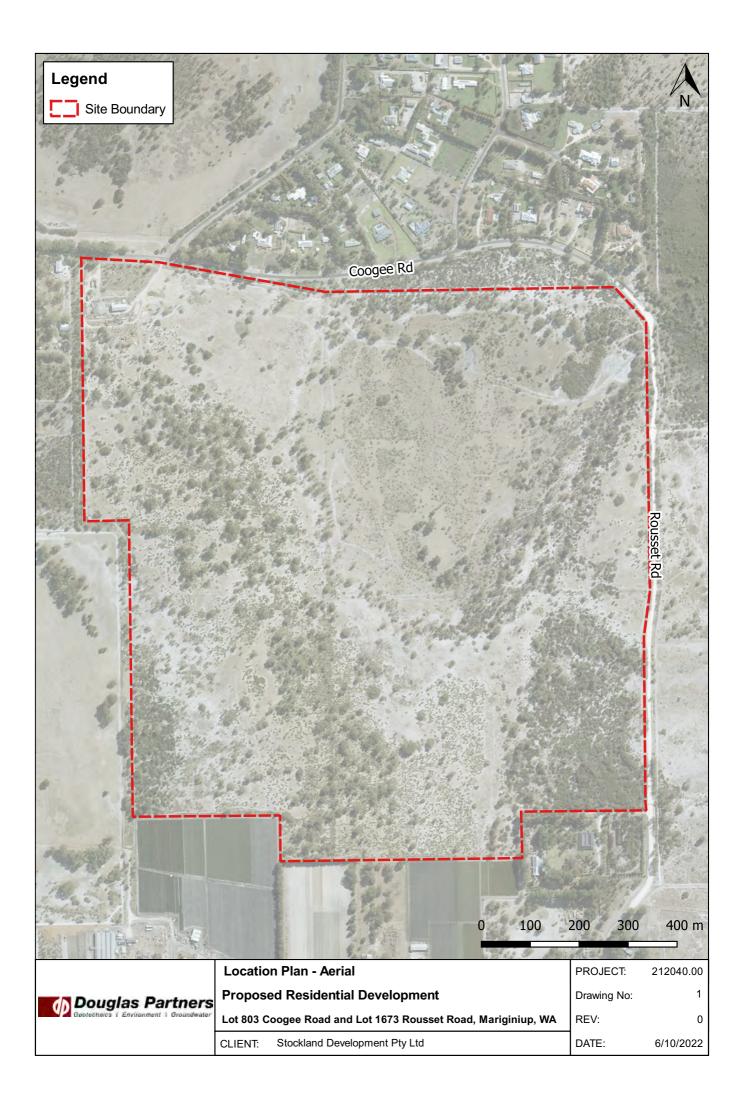
Gneiss

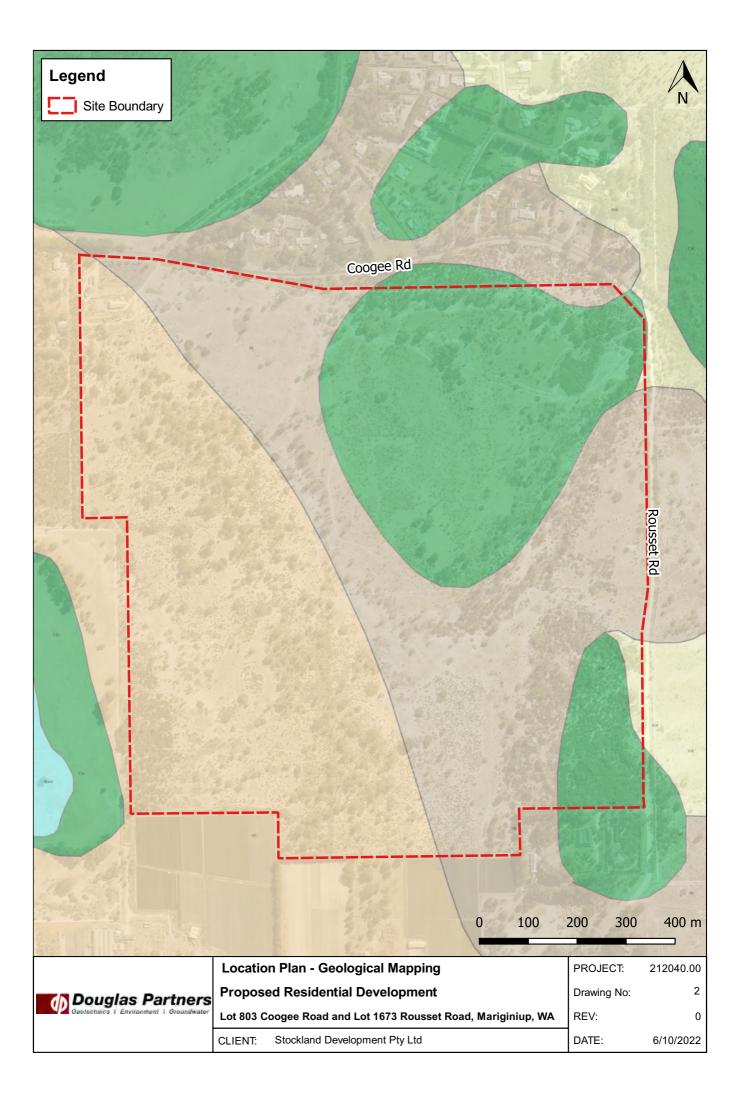
Igneous Rocks

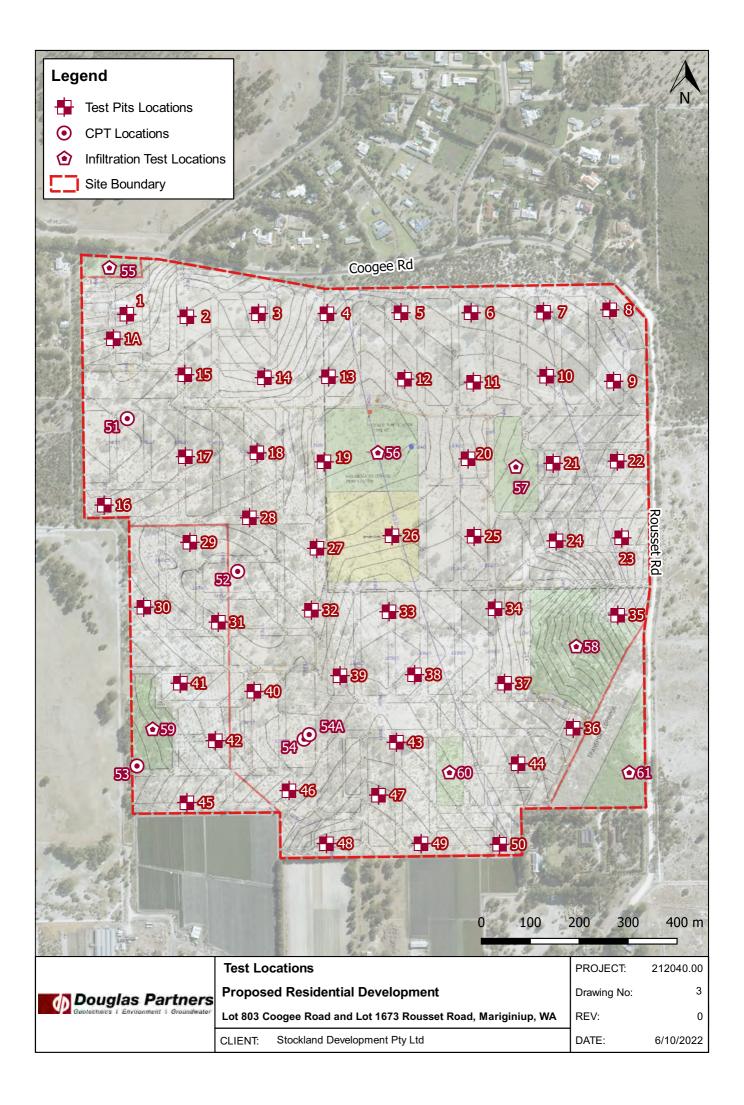
Granite

Dolerite, basalt, andesite

Dacite, epidote


Tuff, breccia


Porphyry


May 2017

Appendix B

Drawings Test Pit Logs CPT Results Borehole Logs

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 51.2 m AHD*
 PIT No:
 1

 EASTING:
 388683
 PROJECT

 NORTHING:
 6491310
 DATE:
 6/7

PIT No: 1 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

\square		Description	.e		Sam		& In Situ Testing	-	Dynamic Penetrometer Test
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm) 5 10 15 20
51	0.15	FILL/Gravelly SAND SP-SM: fine to medium grained, pale vellow-brown, fine to coarse sized crushed limestone, with silt, moist, fill.		D	0.2				
		FILL/SAND SP-SM: fine to medium grained, dark brown, with silt, trace gravel, moist, medium dense, fill.		в	0.5				
		SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand.							
	-1	^L - becoming pale grey from 0.65 m depth.							-1]
20									
	-2	Pit discontinued at 1.8m (Collapsing conditions)	<u>[: :::</u>						
-4-	2								
	-3								
48									

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

SAMPLING & IN SITU TESTING LEGEND									
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)				
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)				
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D	Disturbed sample	⊳	Water seep	S	Standard penetration test				
E	Environmental sample	ž	Water level	V	Shear vane (kPa)				

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 54.3 m AHD*
 PIT No:
 1A

 EASTING:
 388656
 PROJECT N

 NORTHING:
 6491260
 DATE:
 6/7/2

PIT No: 1A PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	U		Sam	pling &	& In Situ Testing		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
54	- 0.3 - 0.45 	FILL/SAND SP-SM: fine to medium grained, brown, with silt, trace gravel, moist, medium dense, fill. General waste particles such as bricks, tiles, organics and domestic refuse observed in fill. - becoming dark brown from 0.15 m depth. SAND SP: fine to medium grained, dark grey, trace silt, moist, medium dense. Possibly fill. SAND SP: fine to medium grained, yellow-brown, trace silt, moist, medium dense. Sand derived from Tamala Limestone.		D	0.4				
53 .	-	Pit discontinued at 1.0m (Target depth)							
52	= 2 - - - - -								
51	- - 3 - - -								

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shard ard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

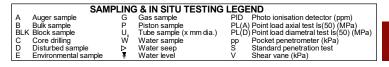
Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 51.6 m AHD*
 PIT No:
 2

 EASTING:
 388806
 PROJECT


 NORTHING:
 6491306
 DATE:
 6/7

PIT No: 2 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

Γ		Description	jc		Sam		& In Situ Testing	L.	Dynamic Penetrometer Test
Ъ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
		Strata	0	Ύ	De	Sar	Comments		5 10 15 20
-	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, _trace silt, with rootlets, moist, topsoil.	<u> </u>						
-	-	SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							
51	-	- becoming pale grey from 0.6 m depth.							
	- -1 -	- becoming medium dense from 0.9 m depth.							-1 1
-	-								
20	- - - 1.7								
ł	-	Pit discontinued at 1.7m (Collapsing conditions)							
t	-2								
ł	-								
t	-								
ł	-								
49	-								
- 4	-								
ł	-								
Ę	-3								
ł	-								
t	-								
ł	-								
				1					
					84		Sector States	-	the state of the s


LOGGED: GG

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

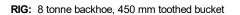
Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

Cone Penetrometer AS1269.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA


SURFACE LEVEL: 51.9 m AHD* PIT No: 3 EASTING: 388953 **NORTHING:** 6491312

PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

	_		Description	lic		Sam		& In Situ Testing	-			
R	Dept (m)		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20		
	- (0.2	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, loose, topsoil.	<u>N</u>	D	0.1						
51	- - - - -		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. - becoming pale grey from 0.45 m depth.									
-	- 1 - - - - -	1.8	- becoming medium dense from 1.15 m depth.							-1		
	- 2 	1.0	Pit discontinued at 1.8m (Collapsing conditions)									
- 49	- 3 - 3 - -											

LOGGED: GG

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Irface level uctives SAMPLING & IN SITU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample (x mm dia.) U, Tube sample (x mm dia.) W Water sample (x mm dia.) S Standard penetration test Water level V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample C

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

□ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 49.2 m AHD*
 PIT No:
 4

 EASTING:
 389093
 PROJECT

 NORTHING:
 6491312
 DATE:
 6/7

PIT No: 4 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	U		Sam	pling &	& In Situ Testing		
교 De	epth m)	of	Graphic Log	e				Water	Dynamic Penetrometer Test (blows per 150mm)
	,	Strata	<u>ა</u> _	Type	Depth	Sample	Results & Comments	5	5 10 15 20
-4-	0.15	TOPSOIL/SAND SP-SM: fine to medium grained, dark \grey-brown, with silt, trace rootlets, moist, topsoil.	ŊΔ						
8 - <t< td=""><td>1.8 -</td><td>SAND SP: fine to medium grained, pale grey, trace silt, moist, medium dense. Bassendean Sand.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1.8 -	SAND SP: fine to medium grained, pale grey, trace silt, moist, medium dense. Bassendean Sand.							
2 49 40 41 47 47 47									

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 Water seep
 S
 Standard penetroin test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 47.4 m AHD* PIT No: 5 **EASTING:** 389244 **NORTHING:** 6491313

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	5	Dimensia Denotementer Test
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata	0	ŕ	ă	Sar	Comments		5 10 15 20
-	- 0.1	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, with roots and rootlets, moist, topsoil.	Σ						
46		SAND SP: fine to medium grained, pale grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale brown from 0.4 m depth.							
-	- - -2 2.0								2
	-	Pit discontinued at 2.0m (Collapsing conditions)							
45	- - - -								
	- - 3 -								
44	-								
	A M								

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Irface level uctives SAMPLING & IN SITU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample (x mm dia.) U, Tube sample (x mm dia.) W Water sample (x mm dia.) S Standard penetration test Water level V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CD

SURVEY DATUM: MGA94 Zone 50 J

Sand Penetrometer AS1289.6.3.3

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.4 m AHD*
 PIT No:
 6

 EASTING:
 389387
 PROJECT

 NORTHING:
 6491313
 DATE:
 5/7

PIT No: 6 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	5	Dimensia Denatura den Tart
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
46 47		TOPSOIL/ORGANIC SAND SP-SM: fine to medium grained, dark grey-brown, with silt, moist, medium dense, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale brown from 0.4 m depth.		D	0.1				
44	- 1.8- -2 	Pit discontinued at 1.8m (Collapsing conditions)	[******						

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point bad axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point bad axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 48.1 m AHD*
 PIT No:
 7

 EASTING:
 389535
 PROJECT

 NORTHING:
 6491315
 DATE:
 5/7

PIT No: 7 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	<u>.</u>		Sam	pling &	& In Situ Testing					
坧	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		vs per 1	50mm)	
-8-	- 0.1	TOPSOIL/SAND SP: fine to medium grained, grey-brown, \trace silt, trace roots and rootlets, moist, topsoil.	<u>XX</u>	D	0.05	ũ			5	10	15	20
	-	SAND SP: fine to medium grained, pale grey, trace silt, moist, medium dense. Bassendean Sand.						-			· · · ·	· · · ·
47	- - - 1 - -	- becoming pale brown from 0.8 m depth.									• • • • • • • • • • • • • • • • • • •	· · · · ·
- - -	- 1.4 - - -	Pit discontinued at 1.4m (Collapsing conditions)	<u></u>								· · ·	
46	-2											
45	- - - 3 -									· · · · · ·	• • • • • • • • • • • • • • • • • • •	· · · · ·
F	-									÷	÷	÷

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

	SAMPLING & IN SITU TESTING LEGEND									
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
в	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)					
С	Core drilling	Ŵ	Water sample		Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 48.6 m AHD*
 PIT No:
 8

 EASTING:
 389670
 PROJECT

 NORTHING:
 6491320
 DATE:
 5/7

PIT No: 8 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	. <u>0</u>		Sam	pling &	& In Situ Testing		
뭑	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	. ,	Strata	U	Тy	De	San	Comments	_	5 10 15 20
48	- 0.1 - - - -	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace roots and rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							
-	- - 1 - - 1.3	Pit discontinued at 1.3m (Collapsing conditions)							
47	2								
46	-								
-	-3 - - -								
	and the second se							「「「「「「」」」	

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.9 m AHD*
 PIT No:
 9

 EASTING:
 389678
 PROJECT

 NORTHING:
 6491173
 DATE:
 5/7

PIT No: 9 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

			Description	ic		Sam	ipling &	& In Situ Testing	-	Dynamic Penetrometer Test
R		epth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
	-	0.1	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, topsoil.	XX	D	0.05				
	-	0.4	SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand.							
	-	0.6	Cemented Silty SAND SM: fine to medium grained, dark brown, moist, medium dense. Coffee Rock, observed on the northern wall of the pit.							
47	- - 1 -		SAND SP: fine to medium grained, brown, trace silt, moist, medium dense. Bassendean Sand.							
	-		- becoming pale brown from 1.3 m depth.							
46	-									
	-2 - -	2.0-	Pit discontinued at 2.0m (Collapsing conditions)							2
	-									
	-									
45	- - - 3									
	-									
	-									

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test ls(50) (MPa)

 BLK Block sample
 U,
 Tube sample (xmm dia.)
 PL(D) Point load diametral test ls(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.4 m AHD*
 PIT No:
 10

 EASTING:
 389541
 PROJECT N
 PROJECT N

 NORTHING:
 6491184
 DATE:
 5/7/

PIT No: 10 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ			Description	ji –		Sam		& In Situ Testing	5	Durarmia Danatromator Test
Я		Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata	0	ŕ	ă	Sar	Comments		5 10 15 20
-	-	0.15	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, topsoil.	ΥÀ						
. 47 .			SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand.		D	0.5				
-	- 1	l	- becoming pale grey from 0.7 m depth.							-1
46	-									
ŀ	Ē	1.6	Pit discontinued at 1.6m (Collapsing conditions)							
[E									
[-2	2								
ł										
45										
-										
-										
ł	-3	3								
ł	-									
44	-									
		10 mm							「「「「	

LOGGED: GG

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL
 Photo ionisation detector (pm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

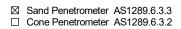
CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 46.9 m AHD* PIT No: 11 EASTING: 389392 **NORTHING:** 6491172

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	5	Dumanuia Danas	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Pene (blows per 5 10	
45	- 0.1 - 0.3 - 0.3 	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, topsoil. SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, medium dense. Bassendean Sand. SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale brown from 0.45 m depth.		D	0.4					
44	- 2.1- 	Pit discontinued at 2.1m (Collapsing conditions)								


RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample C Þ

SURVEY DATUM: MGA94 Zone 50 J

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.1 m AHD*
 PIT No:
 12

 EASTING:
 389251
 PROJECT N

 NORTHING:
 6491178
 DATE:
 5/7/

PIT No: 12 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

$\left[\right]$		Description	.e		Sam		k In Situ Testing	<u>ب</u>			
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar (t		ometer Test 50mm) ^{15 20}
47	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, _trace silt, trace rootlets, moist, topsoil. //	<u>XX</u>								
46	1	SAND SP: fine to medium grained, pale brown, trace silt, moist, medium dense. Bassendean Sand.]	
44 45	-2 2.0-	Pit discontinued at 2.0m (Collapsing conditions)	<u>1</u>						2		

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 V
 Water seep
 S

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.1 m AHD*
 PIT No:
 13

 EASTING:
 389096
 PROJECT N

 NORTHING:
 6491182
 DATE:
 6/7/

PIT No: 13 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	lic		Sam		& In Situ Testing	L.			. . .
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynam (bl	ic Penetrometo lows per 150m	n)
		Strata				Sa	Comments		5	10 15	20
47	0.15	(g. c) storni, that end, adde toolaete, thereid, topeoni		D	0.1						
	0.3	SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, loose. Bassendean Sand.							נ ר		
		SAND SP: fine to medium grained, pale grey, trace silt, moist, medium dense. Bassendean Sand.									
									ן ב		
46	- 1								-1		
-	-2 -2	Pit discontinued at 1.9m (Collapsing conditions)	<u>[·····</u>]								
45											
-											
-4	-3										
-											
					- 3	1		Contraction of the second			
						States		語言	Service Service	Surfa .	
					al.	in the set	A WRITE	F		t a her	
	0				-	1	A VANDA		A. MA		
	1									and inter	
						1		15	and -	一个人	
	AL.					X		É.	A Second		
					0.5.4				N I I	1 Contrary	
						a.		- A	E Z		
	-				1	CHAR IN	the second second		M. m.		

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

□ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 49.9 m AHD*
 PIT No:
 14

 EASTING:
 388965
 PROJECT N

 NORTHING:
 6491181
 DATE:
 6/7/

PIT No: 14 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

Γ			Description	Li		Sam		& In Situ Testing	_	
R		Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	-	0.15	TOPSOIL/SAND SP-SM: fine to medium grained, ¬grey-brown, with silt, trace rootlets, moist, topsoil.	ΧĄ						-
	-		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							
	2- - - -	1	- becoming pale grey and medium dense from 0.9 m depth.							
-	-		Pit discontinued at 1.4m (Collapsing conditions)							
. 48		2								
-										
47	- - :	3								
-										

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 54.7 m AHD*
 PIT No:
 15

 EASTING:
 388802
 PROJECT N

 NORTHING:
 6491187
 DATE:
 6/7/

PIT No: 15 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

	_	Description	ic		Sam		& In Situ Testing	-	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
-	- 0.2 -	TOPSOIL/SAND SP-SM: fine to medium grained, grey-brown, with silt, trace rootlets, moist, loose, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.	Ŵ						
	-								
-	- 1 - - -	- becoming pale grey from 1.0 m depth. - becoming medium dense from 1.15 m depth.							
53	- 1.5 - -	Pit discontinued at 1.5m (Collapsing conditions)	<u> </u>						
-	-2								
52	-								
-	- 3 - 3 								

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

SAMPLING & IN SITU TESTING LEGEND											
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
	Bulk sample	Ρ	Piston sample		Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

Douglas Partners Geotechnics | Environment | Groundwater

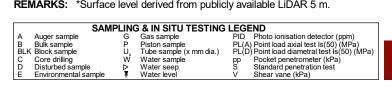
CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 53.7 m AHD* PIT No: 16 **EASTING:** 388637 **NORTHING:** 6490920

PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

\square		Description	Graphic Log	Sampling & In Situ Testing			& In Situ Testing			
RL	Depth (m)	of Strata		Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20	
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	<u>XX</u>	D	0.1				-	
53	- - - -	SAND SP: fine to medium grained, grey, trace silt, moist, loose. Sand derived from Tamala Limestone. - becoming pale yellow from 0.3 m depth.								
	-1	- becoming yellow-brown from 0.9 m depth.								
	- - - - - - - - - - 1.9	- becoming medium dense from 1.05 m depth.								
	-2	SAND SP-SM: fine to medium grained, brown, with silt, moist, weakly cemented. Possibly Bassendean Sand.							-2 7	
51	- 2.7	Pit discontinued at 2.7m (Collapsing conditions)	[•. •••							
· ·	- 3 - - -									



RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

LOGGED: GG

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 57.1 m AHD* PIT No: 17 EASTING: 388803 **NORTHING:** 6491019

PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	<u> </u>		· P		·
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar (t	nic Pene lows pe	r 150mr	r lest n) 20
56	- 1	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, with roots and rootlets, moist, topsoil. SAND SP: fine to medium grained, pale yellow, trace silt, moist, loose. Sand derived from Tamala Limestone. - becoming yellow-brown from 0.65 m depth.		D	0.2							
	- 1.9 - 2 	- becoming medium dense from 1.8 m depth. Pit discontinued at 1.9m (Collapsing conditions)	<u></u>									
- 5												

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Irface level uctives SAMPLING & IN SITU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample (x mm dia.) U, Tube sample (x mm dia.) W Water sample (x mm dia.) S Standard penetration test Water level V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CD

SURVEY DATUM: MGA94 Zone 50 J Sand Penetrometer AS1289.6.3.3

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 53.9 m AHD*
 PIT No:
 18

 EASTING:
 388949
 PROJECT N

 NORTHING:
 6491027
 DATE:
 6/7/

PIT No: 18 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

						6						
RL	Dep	oth	Description	Graphic Log				& In Situ Testing	Water	Dy	namic Penetror/ (blows per 15/	neter Test
æ	(m))	of Strata	Gra	Type	Depth	Sample	Results & Comments	Wa		(blows per 15	
	- 0).15 -	TOPSOIL/ORGAINC SAND SP: fine to medium grained, dark grey-brown, trace silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey-brown, trace silt, moist, loose. Sand derived from Tamala Limestone. - becoming yellow-brown from 0.35 m depth.		D	0.1						
	- - 1 - - -		- becoming medium dense from 1.15 m depth.									
52	- 2	2.4 -								-2		
[-	2.4	Pit discontinued at 2.4m (Collapsing conditions)									
-	-											
5-	- -3											
-	-											
-	-											-

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 D
 Disturbed sample
 W
 Water seep
 S
 Standard penetration test

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.3 m AHD*
 PIT No:
 19

 EASTING:
 389087
 PROJECT N

 NORTHING:
 6491009
 DATE:
 6/7/

PIT No: 19 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

Γ		Description	Ŀ		Sam		& In Situ Testing	L	
Ъ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata		Ť	Ď	Sar	Comments		5 10 15 20 : : : :
ł	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, \trace silt, trace rootlets, moist, topsoil.	<u> </u>						
47	- - - - - - - 1 -	SAND SP: fine to medium grained, pale grey, trace silt, trace rootlets to 0.7 m depth, moist, medium dense. Bassendean Sand.							
	- - - - - - - 1.9								
ł	-2	Pit discontinued at 1.9m (Collapsing conditions)							
45	- - - - -								
ŀ	- -3								
44	-								

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shard vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.0 m AHD*
 PIT No:
 20

 EASTING:
 389381
 PROJECT N

 NORTHING:
 6491015
 DATE:
 5/7/

PIT No: 20 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	.e		Sam		& In Situ Testing	<u>ب</u>	
법	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata	Ċ			Sar	Comments		5 10 15 20
-	- 0.2	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, medium dense, topsoil.	<u>D</u>	D	0.05				-
		SAND SP: fine to medium grained, pale brown, trace silt, moist, medium dense. Bassendean Sand. - becoming pale orange-brown from 1.25 m depth.							
45	-2 - 2.2	Pit discontinued at 2.2m (Collapsing conditions)							-2
	- 3								
						4			

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

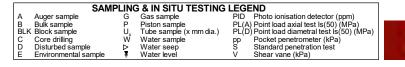
Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.5 m AHD*
 PIT No:
 21

 EASTING:
 389555
 PROJECT N

 NORTHING:
 6491006
 DATE:
 5/7/

PIT No: 21 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	lic		Sam		& In Situ Testing	-	Durant	- D	4	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynami (blo 5	c Pene ows per	150mr	m)
	- 0.1	TOPSOIL/SAND SP: fine to medium grained, grey-brown, \trace silt, trace rootlets, moist, topsoil.	ΣX						-1			
47	-	SAND SP: fine to medium grained, grey, trace silt, moist, _ medium dense. Bassendean Sand. - becoming pale brown from 0.4 m depth.										
-	- 0.8	- becoming brown from 0.7 m depth.							- h	÷	:	
-	- -1 -	Cemented Silty ORGANIC SAND SM: fine to medium grained, dark brown, moist, moderately to strongly cemented. Coffee Rock.	• • • • • • • • • • • •	D	1.0				-1]			
ł	1.25	Pit discontinued at 1.25m (Hard digging)								ł		:
46	-									ł		
F	-											
Ì	-									÷		
ł	-2									÷		
F	-									-	:	
t	_											
45	-									÷		
Ē	-									:	:	
ł										÷		
F	-3									:	:	
İ	_									ł		
ł	-											•
t	-								:	÷	÷	÷


RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

⊠ Sand Penet □ Cone Penet

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 51.9 m AHD*
 PIT No:
 22

 EASTING:
 389686
 PROJECT N

 NORTHING:
 6491010
 DATE:
 5/7/

PIT No: 22 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	lic		Sam	pling &	& In Situ Testing	<u> </u>	
Ч	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	- 0.15	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. - becoming pale grey from 0.4 m depth. - becoming medium dense from 1.25 m depth. - becoming yellow-brown from 1.5 m depth.							5 10 15 20
	- 1.9 -2 	Pit discontinued at 1.9m (Collapsing conditions)							

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

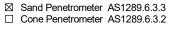
WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)


 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 55.2 m AHD*
 PIT No:
 23

 EASTING:
 389695
 PROJECT N

 NORTHING:
 6490853
 DATE:
 5/7/

PIT No: 23 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

			Description	ic		Sam		& In Situ Testing		
RL	Dej (m	pth ו)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
55		0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, _ trace silt, trace rootlets, moist, topsoil.	χ <u>Λ</u>			0,			
54 5	- - - - - - - - -		SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale grey from 0.45 m depth.		D	0.3				
-	- - - - - - - 2	1.8	Pit discontinued at 1.8m (Collapsing conditions)							
53	-									
52	-3 - -									
									Contraction of the second seco	

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 48.3 m AHD*
 PIT No:
 24

 EASTING:
 389561
 PROJECT N

 NORTHING:
 6490847
 DATE:
 5/7/

PIT No: 24 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	jc		Sam		& In Situ Testing	5	Durran	i - Dana		- T+
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynam (b	lows pe	etromete r 150mr	er Lest n)
		Strata				Saı	Comments		5	10	15	20
47 48 48	- 0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. - becoming pale grey from 0.4 m depth. - becoming medium dense from 0.45 m depth.		D	0.05							
46	-2 2.0	Pit discontinued at 2.0m (Collapsing conditions)							2			
45	-											

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 47.1 m AHD* PIT No: 25 **EASTING:** 389393 **NORTHING:** 6490856

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	Li		Sam	npling a	& In Situ Testing	_				
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynai (I	nic Penetr blows per 7 10	ometer Test 150mm) 15 20	
47	- 0.1	TOPSOIL/SAND SP: fine to medium grained, grey-brown, \trace silt, trace rootlets, moist, topsoil.	ΣX									
-	- - - - - -	SAND SP: fine to medium grained, brown, trace silt, moist, medium dense. Bassendean Sand.		D	0.5							
	· · ·	- becoming pale brown from 1.0 m depth.										
45	-2 - 2.1	Pit discontinued at 2.1m (Collapsing conditions)	·····						-2			_

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 Ifface rever control

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 U
 U
 Picto ionisation detector (ppm)
 Picto ionisation detector (ppm)

 W
 Water sample
 Picto Point bad availatest 1s(50) (MPa)
 Picto Point bad availatest 1s(50) (MPa)

 W
 Water sample
 Standard penetrometer (kPa)
 Pocket penetrometer (kPa)

 W
 Water seep
 S
 Standard penetration test

 Water level
 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CD

Sand Penetrometer AS1289.6.3.3

Cone Penetrometer AS1289.6.3.2

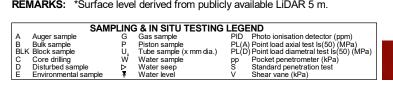
CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 46.9 m AHD* PIT No: 26 **EASTING:** 389225 **NORTHING:** 6490858

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

	_		Description	.c		Sam		& In Situ Testing	<u> </u>		· P		
RL		epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar (t	nic Pene lows pe	r 150mr	n)
	-	0.2	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, medium dense, topsoil.						-				
	-		SAND SP: fine to medium grained, dark grey-brown, trace silt, trace rootlets, moist, loose to medium dense. Bassendean Sand.		D	0.45			-				
46	- 1	-	- becoming pale brown from 0.7 m depth. - becoming medium dense from 0.75 m depth.										
45			- becoming brown from 1.5 m depth.							2			
		2.5	becoming moist to wet from 2.4 m depth.										
- 44	- 3	2.0	Pit discontinued at 2.5m (Collapsing conditions)										



LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 52.0 m AHD*
 PIT No:
 27

 EASTING:
 389071
 PROJECT N

 NORTHING:
 6490832
 DATE:
 6/7/

PIT No: 27 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

Γ			Description	Li		Sam		& In Situ Testing	-			
RL	De (n	pth n)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		Penetrome s per 150r 0.15	eter Test mm) ²⁰
-	-	0.15	TOPSOIL/ORGANIC SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	K	D	0.1				-		
	- - - - - - - - - -	-	SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. becoming pale grey and medium dense from 0.45 m depth.									
-		1.5	Pit discontinued at 1.5m (Collapsing conditions)	<u>[····</u>]								
	- 2 											
	- - - 3 - -											

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

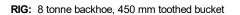
REMARKS: *Surface level derived from publicly available LiDAR 5 m.

	SAM	PLING	& IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT: PROJECT: LOCATION:

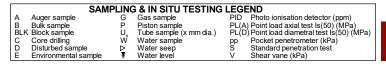
Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 57.8 m AHD*
 PIT No:
 28

 EASTING:
 388934
 PROJECT N


 NORTHING:
 6490894
 DATE:
 6/7/

PIT No: 28 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	. <u>c</u>		Sam	pling a	& In Situ Testing	_				
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20			
-	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	XX.						-1	•		
27	-	SAND SP: fine to medium grained, pale yellow, trace silt, moist, loose. Sand derived from Tamala Limestone.										
	- 1	- becoming yellow-brown and medium dense from 0.9 m depth.										
-	-2 - 2.1								-2	•	:	
-	-	Pit discontinued at 2.1m (Collapsing conditions)										
55	-											
-	-3									•		
-	-									•		
Ŀ	-									•		


LOGGED: GG

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 58.4 m AHD* PIT No: 29 **EASTING:** 388812 **NORTHING:** 6490844

PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	r	Dynamic Penetrometer Test
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm) 5 10 15 20
58	- 0.2	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace roots and rootlets, moist, medium dense, topsoil. SAND SP: fine to medium grained, pale yellow, trace silt, moist, medium dense. Sand derived from Tamala Limestone. - becoming yellow-brown from 0.6 m depth.		D	0.1	05			-2 -2
55 56	- 2.3	Pit discontinued at 2.3m (Collapsing conditions)							
								EL A MAN	

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Irface level uctives SAMPLING & IN SITU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample (x mm dia.) U, Tube sample (x mm dia.) W Water sample (x mm dia.) S Standard penetration test Water level V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDL

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 49.2 m AHD*
 PIT No:
 30

 EASTING:
 388718
 PROJECT N

 NORTHING:
 6490711
 DATE:
 6/7/

PIT No: 30 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

\square		Description	. <u>c</u>		Sam	pling &	& In Situ Testing				
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Per (blows p	netrometer Te per 150mm) 15 20	
49	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, with rootlets, moist, topsoil.	<u>XX</u>						-1		
· ·		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.									
48	- 1 - - - 	- becoming medium dense from 0.9 m depth. - becoming pale grey from 1.0 m depth.									
	- -	Pit discontinued at 1.5m (Collapsing conditions)									
47	-2										
46	- - - 3 -										

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

	SAMPLING & IN SITU TESTING LEGEND											
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)							
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test							
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 56.1 m AHD*
 PIT No:
 31

 EASTING:
 388870
 PROJECT N

 NORTHING:
 6490681
 DATE:
 6/7/

PIT No: 31 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	.e		Sam		& In Situ Testing	-	D	D (T (
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (blo	Nenetr ws per	ometer 150mm	20 20
56	- 0.2	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace roots and rootlets, moist, medium dense, topsoil.	,									
	- - -	SAND SP: fine to medium grained, pale yellow, trace silt, moist, medium dense. Sand derived from Tamala Limestone.										
55	- 1 	- becoming yellow-brown from 0.85 m depth.									· · · · · · · · ·	
54	- 1.8 2 	Pit discontinued at 1.8m (Collapsing conditions)	<u> </u>	<u> D </u>	-1.8-							
53	- 3 - - -										•	

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

SAMPLING & IN SITU TESTING LEGEND										
A Auger	sample G	3	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulkisa					Point load axial test Is(50) (MPa)					
BLK Blocks	ample L	J,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)					
C Core d		Ϋ́	Water sample	pp	Pocket penetrometer (kPa)					
	ed sample ▷	•	Water seep	S	Standard penetration test					
E Enviro	nmental sample		Water level	V	Shear vane (kPa)					
•										

CLIENT: PROJECT: LOCATION:

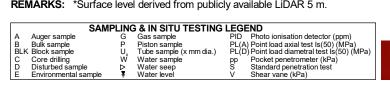
Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 54.9 m AHD* PIT No: 32 EASTING: 389061 **NORTHING:** 6490705

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ			Description	lic		Sam		& In Situ Testing	5	
R		Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata	G	Ţ	De	Sar	Comments		5 10 15 20
	- - - - - - - - - - - - - - - - - - -	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey-brown, trace silt, moist, loose. Sand derived from Tamala Limestone. - becoming pale grey-brown from 0.35 m depth. - becoming pale brown from 0.7 m depth. - becoming yellow-brown from 0.75 m depth.		D	0.5				
	-2 - - - - -	1.8 -	Pit discontinued at 1.8m (Collapsing conditions)							
		and the second s						-	2	9 /

LOGGED: GG



RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 48.2 m AHD*
 PIT No:
 33

 EASTING:
 389219
 PROJECT N

 NORTHING:
 6490702
 DATE:
 5/7/

PIT No: 33 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

	_	Description	lic		Sam		& In Situ Testing	<u> </u>		· · · · · · ·
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	blows pe	etrometer Test er 150mm)
48	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	Υ <u>Λ</u>						1	
		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							ו ר ר	
47	- 1	- becoming pale brown from 0.7 m depth.							-1	
		- becoming medium dense from 1.25 m depth.								
	-2 -2	Pit discontinued at 1.9m (Collapsing conditions)	<u></u>							
- 4-										
45	- 3									
Ľ										

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (xmm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 48.0 m AHD*
 PIT No:
 34

 EASTING:
 389436
 PROJECT N

 NORTHING:
 6490708
 DATE:
 5/7/

PIT No: 34 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

	_	Description	Li		Sam		& In Situ Testing	-	
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
48		Strata		ŕ	Ğ	Sar	Comments	-	5 10 15 20 : : : :
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	<i>[, , , , ,</i> ,						
-	-	SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand.							
-	-	└- becoming pale grey from 0.3 m depth.							
	-	^L - with roots to 0.35 m depth.							
47	-								
4	- 1								
-	-								
F									
F	- 1.6	Pit discontinued at 1.6m (Collapsing conditions)	····						
Ē	-								
-46	-2								
ŀ	-								
ŀ	-								
-	-								
F	-								
-45	-3								
-	-								
-	-								
						17	S. S. R. Ring		A CONTRACTOR
		E A ANA				a series	THE SUIL	the second	Line the second
						Na.			The grant and
	10110								1 - Contraction of the second
	A) - 18	- Souther and the			X		- ANTE	10	
	1.1.1					L		Tan .	A second and
	11/1						V.		
	100							120	20 1
								Contraction of the	
					and the second		Mar Ing	- All	A A A A A A A A A A A A A A A A A A A
					- Carl			the state	The second second

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL
 Photo ionisation detector (pm)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 F
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 50.8 m AHD*
 PIT No:
 35

 EASTING:
 389687
 PROJECT N

 NORTHING:
 6490695
 DATE:
 5/7/

PIT No: 35 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	jc		Sam		& In Situ Testing	5	Dumamia Danatramatar Taat
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata		É.	ð	Sa	Comments		5 10 15 20
- - - - - -	- 0.1	\trace silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. - becoming pale grey from 0.3 m depth.							
•	- 1.5	- becoming medium dense from 1.2 m depth. Pit discontinued at 1.5m (Collapsing conditions)							
-04	-								
-	- -2 - - - - -								
-									
	-3 - - -								
						1	199	R'S	and a for the second

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 48.2 m AHD*
 PIT No:
 36

 EASTING:
 389596
 PROJECT N

 NORTHING:
 6490464
 DATE:
 5/7/

PIT No: 36 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

\square		Description	. <u>0</u>		Sam		& In Situ Testing		
R	Depth (m)	of	Graphic Log	Type	pth	Sample	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata	Ū	Ту	Depth	Sam	Results & Comments	>	5 10 15 20
	. 0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	<u>XX</u>	D	0.1				
-4		SAND SP: fine to medium grained, pale brown, trace silt, moist, loose. Bassendean Sand.							
		moist, loose. Bassendean Sand.							
									ן וויק איז איז דער איז דער איז דער איז
-									ļ Ģ
	- 1	- becoming medium dense from 1.05 m depth.							
47									
Ł									t Li i i i
-									
	-2 2.0	Pit discontinued at 2.0m (Collapsing conditions)	ŀ						2
46									
	- 3								
2									
	100								
						1	teather		AND
	1.1	Julia Parte to				建学	a strange	-	u the second
								200	
	1								
					XC S			2.01 - A	Aller
	1				Ster		A CAR	P. M.	St. 7/194 -
	6					A.		a state	
							General And		
	1 m								A A A A A A
							and the second second	- AND	and the second second
					and and	1 al	A CALLER	and and	
	in the second	and the second second			Le la	1	Call States		the star
					10 m				
		A A A A A A A A A A A A A A A A A A A			-		Martin and a star		The State of the S

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shard ard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

□ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 50.2 m AHD*
 PIT No:
 37

 EASTING:
 389455
 PROJECT N

 NORTHING:
 6490556
 DATE:
 5/7/

PIT No: 37 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	Jic		Sam		& In Situ Testing	-	Dimensia Den	- 4 4 4 4	. T
Ъ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Pen (blows pe	etrometer er 150mm)
		Strata	0	É.	ð	Saı	Comments		5 10	15	20
50 -	- 0.1	\trace silt, trace rootlets, moist, topsoil.							Ļ	•	
-	- - - -	SAND SP: fine to medium grained, grey-brown, trace silt, moist, loose. Bassendean Sand. - becoming grey from 0.35 m depth.									
ł	-1	- becoming pale grey from 0.9 m depth.							-1		
49	-	- becoming medium dense from 1.05 m depth.									
ļ	- 1.4	Pit discontinued at 1.4m (Collapsing conditions)	L								
t											
ŀ	-										
Ę	-2										:
-											
-	-										
ţ	-									:	:
ŀ	-										
-	-									:	÷
t	- 3										
ł	-										
47											:
ŀ	-										
		A CAR AND					AND AND AND	-	4	in the second	

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

_

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 51.3 m AHD*
 PIT No:
 38

 EASTING:
 389271
 PROJECT N

 NORTHING:
 6490573
 DATE:
 5/7/

PIT No: 38 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ		Description	.cj		Sam		& In Situ Testing	-	
묍	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata		É.	ă	Sai	Comments		5 10 15 20 : : : :
ł	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	ĮΛ						
5-	-	SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							ן און און איז
ł	-	- becoming pale grey from 0.45 m depth.							[ſ
ł	-								╎╏╴┊╴┊╴╎
F									[_
F	- 1	- becoming medium dense from 1.05 m depth.							
20-	-								
÷	- 1.5	Pit discontinued at 1.5m (Collapsing conditions)							
F	-								
F	-								
Ē	-2								
49	-								
F	-								
F	-								
ŀ	-								
F	-3								
-84	-								
È	-								
							and and a		1 and the
		and the second se				1	L. Salar An		
	and	Edit / Designation and <mark>E</mark> llipsing and the			1		No.		
	STP IN	Here and the second			100	- Comp	· Street	51	The star of the
					and the	1		A STATE	
	(Ash	and the second se			1 al		for and be		
		the state of the s						and and a	and the second
		and a contraction of the second				and I	S.S.	Sec. 1	
	and the second	- Martin and - A Martin -			and the	1		No.	and and and

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 55.1 m AHD* PIT No: 39 EASTING: 389119 **NORTHING:** 6490572

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Γ			Description	. <u>c</u>		Sam		& In Situ Testing	_	
ā	ł	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
			Strata	0			Sar	Comments	-	5 10 15 20
-4	8-	0.2	TOPSOIL/SAND SP-SM: fine to medium grained, darkgrey, with silt, with roots and rootlets, moist, loose, topsoil	<u>M</u>	D	0.05				-
-	ŀ		SAND SP: fine to medium grained, yellow-brown, trace silt, moist, loose. Sand derived from Tamala Limestone.							<u> </u>
	+C	1	- tree root, 0.1 m diameter, at 0.8 m depth.							
			- becoming medium dense from 1.45 m depth.							
-6	8	2 2.0	Pit discontinued at 2.0m (Collapsing conditions)							2
-	-									
-										
	1	3								
-6	ő									
Ŀ	-									
		and the second second						F.S.		

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Irface level uctives SAMPLING & IN SITU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample (x mm dia.) U, Tube sample (x mm dia.) W Water sample (x mm dia.) S Standard penetration test Water level V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample C

SURVEY DATUM: MGA94 Zone 50 J

Sand Penetrometer AS1289.6.3.3

□ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 56.1 m AHD*
 PIT No:
 40

 EASTING:
 388943
 PROJECT N

 NORTHING:
 6490539
 DATE:
 5/7/

PIT No: 40 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	5	Dimensia Den desmoder Test
Я	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata	U	Ţ	De	Sar	Comments		5 10 15 20
-26	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, _trace silt, trace rootlets, moist, topsoil.	<u>XX</u>						- - - 1
55	- - - - - 1	SAND SP: fine to medium grained, yellow-brown, trace silt, moist, loose. Sand derived from Tamala Limestone.							
	- - - - - - - 2 2.0	- becoming medium dense from 1.15 m depth.							
54		Pit discontinued at 2.0m (Collapsing conditions)							
53	- 3 - - -								
	and the second second								

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 47.7 m AHD*
 PIT No:
 41

 EASTING:
 388792
 PROJECT N

 NORTHING:
 6490556
 DATE:
 5/7/

PIT No: 41 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	2	Dumo	mia Dan	otromot	or Toot
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna (mic Pene blows pe	etromet r 150m	er Test m)
		Strata	0	É.	ð	Saı	Comments		5	10	15	20
ŀ	- 0.2	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, with rootlets, moist, medium dense, topsoil.	<u>D</u>	D	0.1							
-	-	SAND SP: fine to medium grained, grey, trace silt, moist, loose to medium dense. Bassendean Sand.									:	
47	-	- becoming pale grey from 0.6 m depth.										
-	- 1 - -	- becoming medium dense from 1.05 m depth.							-1 L			
ŀ	- 1.5	Pit discontinued at 1.5m (Collapsing conditions)							L:]:	:	:	:
46	-								ļĻ			
-	-2											
-	-										:	
-	-										:	
45												
4	-										÷	
ł	-3										į	
ţ	-											
Ŀ	-											
	10.00					No. No.						
		States in the states			14				- Andrew	-	- Al	
		in the second				- P	A PARTY AND A	X	S. Car	and the	En f	

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 50.7 m AHD*
 PIT No:
 42

 EASTING:
 388864
 PROJECT N

 NORTHING:
 6490438
 DATE:
 5/7/

PIT No: 42 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Π	_	Description	.e		Sam		& In Situ Testing	-					
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water			Penet /s per 10	150mr	n) 20
	· 0.2 ·	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, with rootlets, moist, loose, topsoil.	<u> </u>	D	0.1				-1			:	
		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							-	•	•		
- 22 - 23 	- 1	- becoming pale grey from 0.65 m depth. - becoming medium dense from 0.75 m depth.								· · · · · · ·		•	
49													
	-2	Pit discontinued at 1.8m (Collapsing conditions)								1		•	
	-3												
					ġ.		ab a	12				100	

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)


 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 52.5 m AHD*
 PIT No:
 43

 EASTING:
 389234
 PROJECT N

 NORTHING:
 6490435
 DATE:
 5/7/

PIT No: 43 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	lic		Sam		& In Situ Testing	-	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
		TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, medium dense, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale grey from 0.5 m depth.		D	0.1				
	- 1.8 -2 	Pit discontinued at 1.8m (Collapsing conditions)							

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

		SAMPL	LING	0 & IN 5110 1E511NG L	LEGE	ND	
	А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
		Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)	
	С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
	D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
	E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	
1							÷

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 48.8 m AHD* PIT No: 44 EASTING: 389483 **NORTHING:** 6490391

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	-	Dum	- D		- T4
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynami (blo	ows per	romete 150mr	n)
		Strata	0	É.	ă	Saı	Comments		5	10	15	20
-	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, \[\] trace silt, trace rootlets, moist, topsoil.	<u>XX</u>	D	0.1				 			
48	-1	SAND SP: fine to medium grained, grey-brown, trace silt, moist, medium dense. Bassendean Sand. - becoming grey from 0.3 m depth. - becoming pale grey from 0.45 m depth.										
47	- - - 1.9 - 2 - -	Pit discontinued at 1.9m (Collapsing conditions)										
46	- 3											
	A NEW TANK									C C C C C C C C C C C C C C C C C C C		;

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

C

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample ₽

SURVEY DATUM: MGA94 Zone 50 J Sand Penetrometer AS1289.6.3.3

□ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 48.1 m AHD* PIT No: 45 EASTING: 388806 **NORTHING:** 6490312

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	<u> </u>	
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
48	- 0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, with rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose to medium dense. Bassendean Sand. - becoming pale grey from 0.4 m depth. - becoming medium dense from 0.75 m depth. Pit discontinued at 1.4m (Collapsing conditions)							
45 46	-2								

RIG: 8 tonne backhoe, 450 mm toothed bucket

G P U, W

₽

A Auger sample B Bulk sample BLK Block sample

CDE

Core drilling Disturbed sample Environmental sample

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Douglas Partners

LOGGED: GG

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

Geotechnics | Environment | Groundwater

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 58.7 m AHD*
 PIT No:
 46

 EASTING:
 389015
 PROJECT N

 NORTHING:
 6490336
 DATE:
 5/7/

PIT No: 46 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	.ci		San		& In Situ Testing	<u>ب</u>	
Ъ	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	Х <u>Л</u>			0			-
	-	SAND SP: fine to medium grained, yellow-brown, trace silt, moist, loose. Sand derived from Tamala Limestone.		D	0.4				
	- 1 - - - -	 becoming orange-brown from 1.0 m depth. becoming medium dense from 1.15 m depth. 							
57	- 1.6 -	Pit discontinued at 1.6m (Collapsing conditions)	l						
•	- 2 - 2 								
	- - - - - - - -								
				1					

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA

SURFACE LEVEL: 54.5 m AHD* PIT No: 47 EASTING: 389198 **NORTHING:** 6490327

PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	jc.		Sam		& In Situ Testing					. T . 1
Ъ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynan (b	nic Pene lows per	tromete 150mn	r Test n)
		Strata	0	É.	ð	Saı	Comments		5	10	15	20
53	- 0.2	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, medium dense, topsoil. SAND SP: fine to medium grained, yellow-brown, trace silt, moist, loose to medium dense. Sand derived from Tamala Limestone.		D	0.1							
	- 1.9	- becoming medium dense from 1.7 m depth.							-			:
52	- 1.9 -2 - - - - - - - - - - - - - - - - - -	Pit discontinued at 1.9m (Collapsing conditions)										
	and the second							A Start A			1	

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Irface level uctives SAMPLING & IN SITU TESTING LEGEND G Gas sample PID Photo ionisation detector (ppm) P Piston sample (x mm dia.) U, Tube sample (x mm dia.) W Water sample (x mm dia.) S Standard penetration test Water level V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample C

SURVEY DATUM: MGA94 Zone 50 J Sand Penetrometer AS1289.6.3.3

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 56.9 m AHD*
 PIT No:
 48

 EASTING:
 389091
 PROJECT N

 NORTHING:
 6490228
 DATE:
 5/7/

PIT No: 48 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

Π			Description	U		Sam	pling &	& In Situ Testing				
⊾	Deptl (m)		of	Graphic Log	e				Water	Dynamic I (blow	Penetrometer s per 150mm)	Test
	(11)		Strata	<u>م</u>	Type	Depth	Sample	Results & Comments	5		10 15	20
	0.4	15-	TOPSOIL/SAND SP-SM: fine to medium grained, dark \grey-brown, with silt, trace rootlets, moist, topsoil.	XX.								
	-		SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, medium dense. Sand derived from Tamala Limestone. SAND SP: fine to medium grained, pale yellow-brown, trace silt, trace rootlets to 1.8 m depth, moist, medium dense. Sand derived from Tamala Limestone. - becoming yellow-brown from 0.6 m depth.									
	- 2	2.4	Pit discontinued at 2.4m (Collapsing conditions)									
- 5	- - - - - - -											

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 52.9 m AHD*
 PIT No:
 49

 EASTING:
 389285
 PROJECT N

 NORTHING:
 6490228
 DATE:
 5/7/

PIT No: 49 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

		Description	.ici		Sam	Sampling & In Situ Testing							
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)				
		Strata	0	ŕ	Ğ	Sar	Comments		5 10 15 20				
-	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, pale yellow-brown, trace silt, moist, loose. Sand derived from Tamala Limestone. - becoming medium dense from 0.9 m depth. - becoming yellow-brown from 1.0 m depth.	X						-				
2	- - -												
52	1 -												
51	- 1.9 -2 - - - - -	Pit discontinued at 1.9m (Collapsing conditions)											
20	- 3 - - -												

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U_x
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shard ard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 48.5 m AHD*
 PIT No:
 50

 EASTING:
 389445
 PROJECT N

 NORTHING:
 6490227
 DATE:
 5/7/

PIT No: 50 PROJECT No: 212040.00 DATE: 5/7/2022 SHEET 1 OF 1

	Depth (m)	Description	jc	Sampling & In Situ Testing				L.	Dumennie Demetremeter Teet					
Ч		epth (m)	of	Graphic Log	Type	Depth Sample	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)				
			Strata		Ĥ	ŏ	Sa	Comments			5	10	15	20
ŀ	ŀ	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, \trace silt, trace rootlets, moist, topsoil.	<u> </u>						-1				
-			SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							-	:	:		
-4	F		- becoming pale grey from 0.5 m depth.							-		-		
-	-1													
ŀ			- becoming medium dense from 1.15 m depth.											:
47	-		- becoming medicin dense nom 1.15 m depin.							-				
-	-	1.6	Pit discontinued at 1.6m (Collapsing conditions)	<u></u> .						╞╴┖				
ŀ	ŀ										Ľ			
ļ	-2										ļ	:	÷	÷
ŀ	ŀ												:	
46	ŀ										÷	:	÷	:
	ŀ												:	
	ŀ												:	:
ŀ	-3											÷	:	÷
ŀ	ŀ													
-	F												:	
												A AN		

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

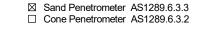
WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

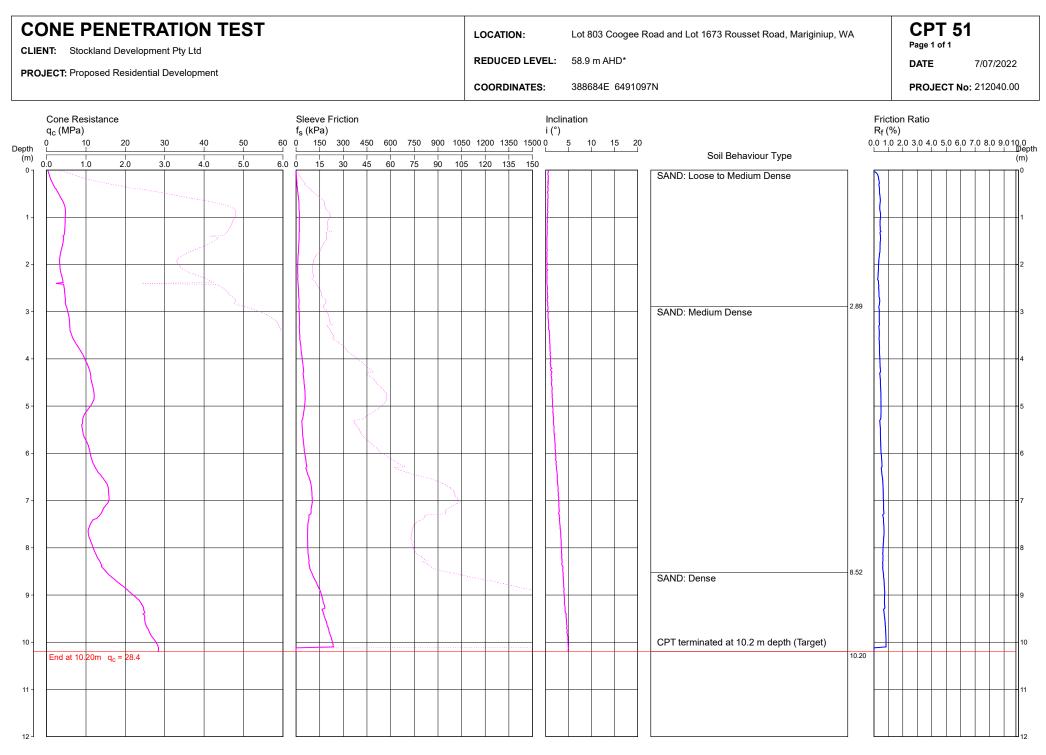
 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)


 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

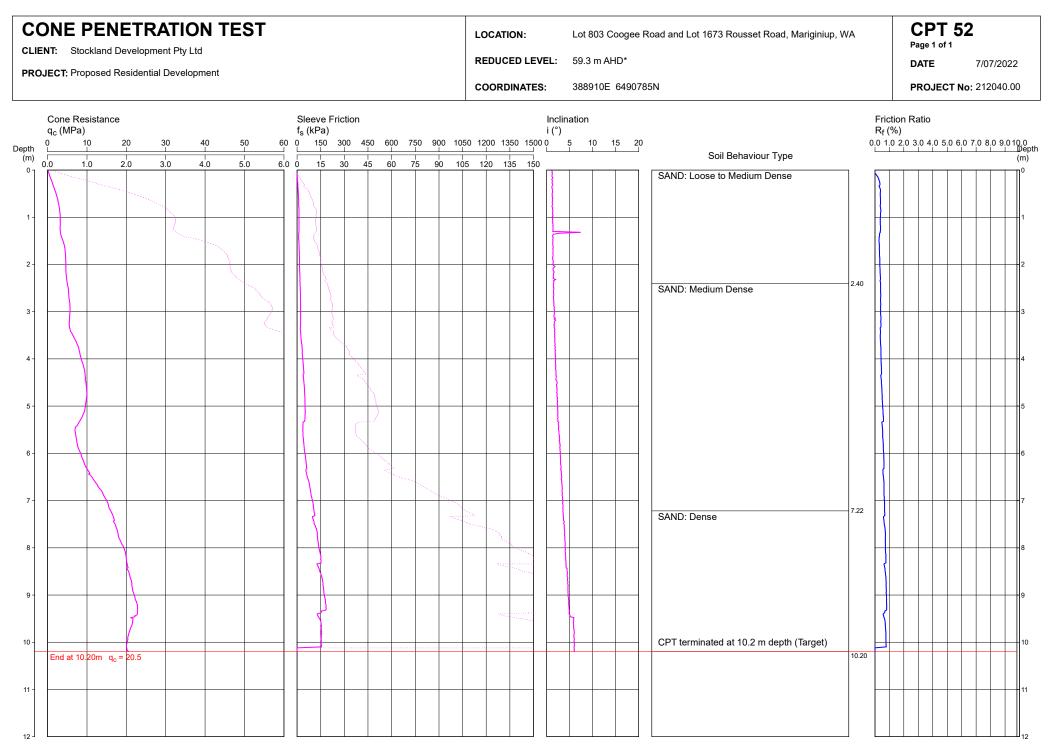
 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)


 D
 Disturbed sample
 V
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

SURVEY DATUM: MGA94 Zone 50 J

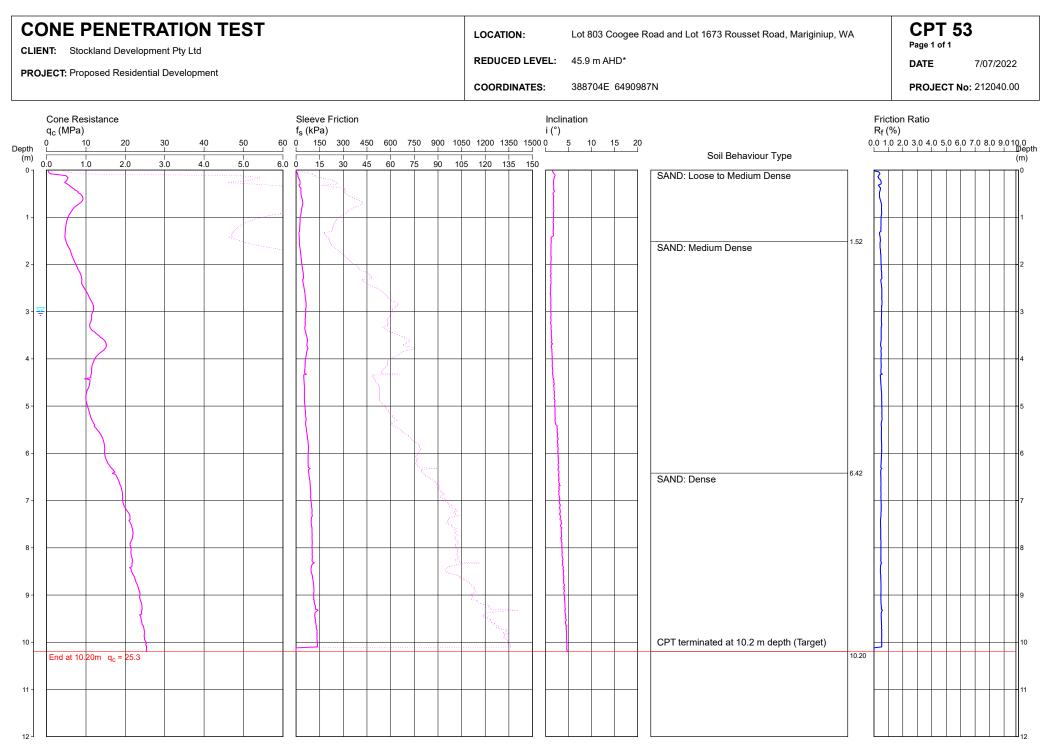
Douglas Partners Geotechnics | Environment | Groundwater



REMARKS: *Surface level derived from publicly available LiDAR 5 m. Dry to 9.9 m depth.

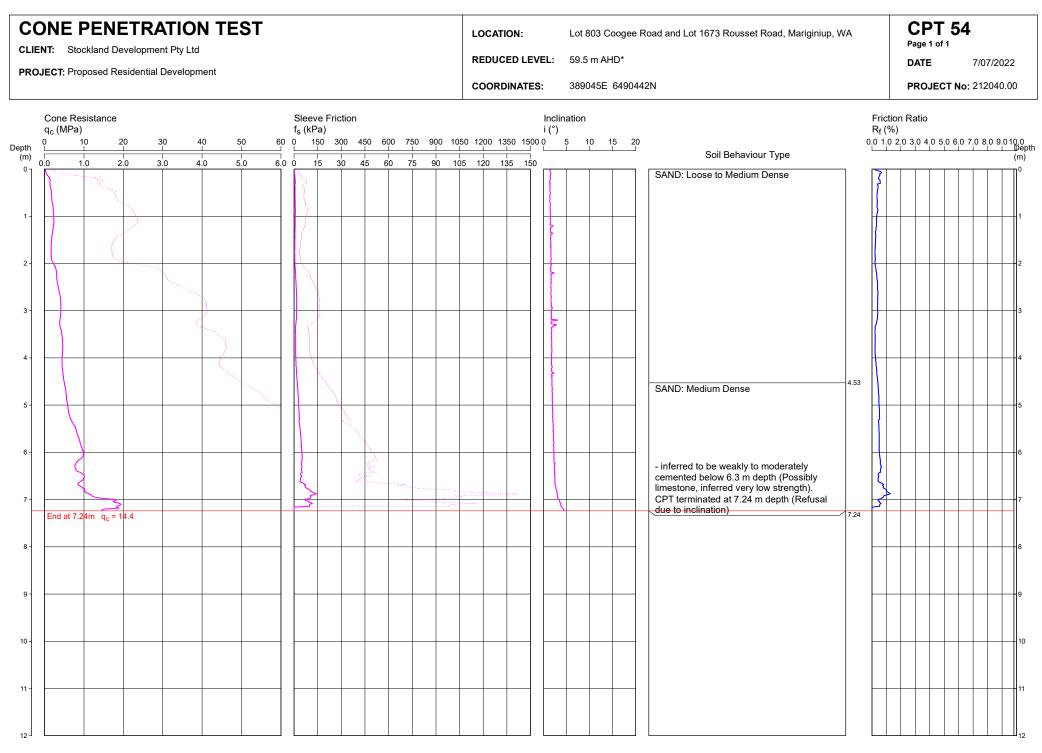
File: P:\212040.00 - MARIGINIUP, 803 Coogee & 1673 Rousset Rd\4.0 Field Work\CPT\212040 - CPT 51.CP5 Cone ID: Probedrill Type: EC42

ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd



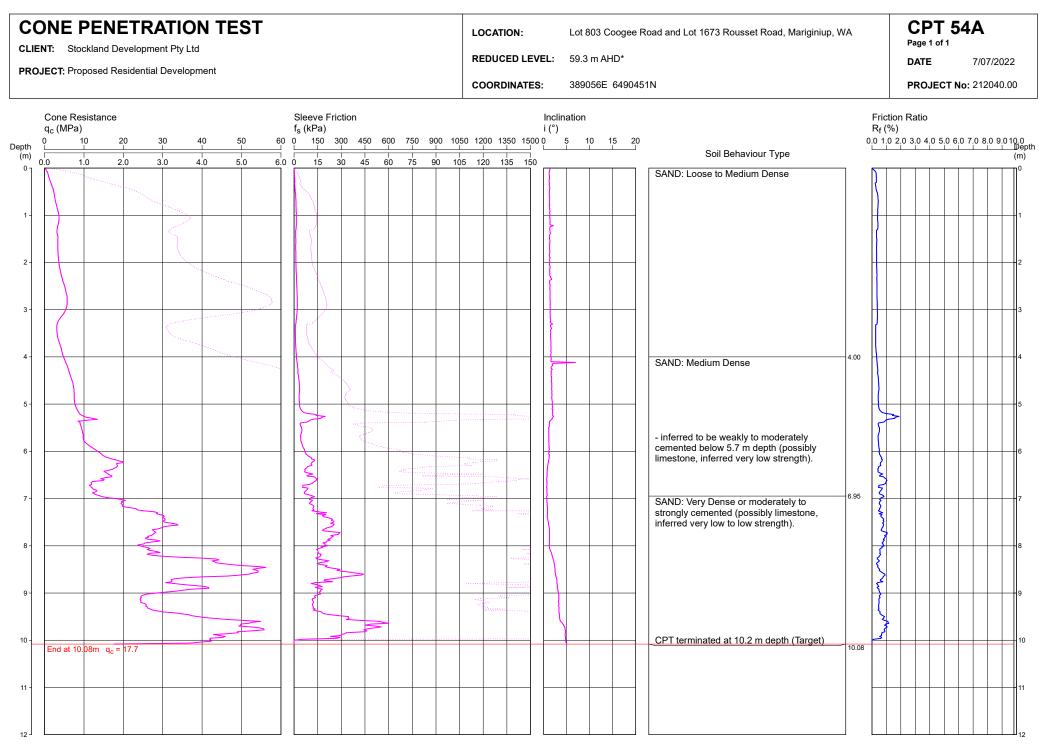
REMARKS: *Surface level derived from publicly available LiDAR 5 m. Dry to 10.1 m depth.

File: P:\212040.00 - MARIGINIUP, 803 Coogee & 1673 Rousset Rd\4.0 Field Work\CPT\212040 - CPT 52.CP5 Cone ID: Probedrill Type: EC42


ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd

REMARKS: *Surface level derived from publicly available LiDAR 5 m. Groundwater measured at 3 m depth. File: P:\212040.00 - MARIGINIUP, 803 Coogee & 1673 Rousset Rd\4.0 Field Work\CPT\212040 - CPT 53.CP5 Cone ID: Probedrill Type: EC42

ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd



REMARKS: *Surface level derived from publicly available LiDAR 5 m. Dry to 7.1 m depth.

File: P:\212040.00 - MARIGINIUP, 803 Coogee & 1673 Rousset Rd\4.0 Field Work\CPT\212040 - CPT 54.CP5
Cone ID: Probedrill
Type: EC42

ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd

REMARKS: *Surface level derived from publicly available LiDAR 5 m. Dry to 10 m depth.

File: P:\212040.00 - MARIGINIUP, 803 Coogee & 1673 Rousset Rd\4.0 Field Work\CPT\212040 - CPT 54A.CP5 Cone ID: Probedrill Type: EC42

ConePlot Version 5.9.2 © 2003 Douglas Partners Pty Ltd

Stockland Development Pty Ltd

Road, Mariginiup, WA

Proposed Residential Development

Lot 803 Coogee Road and Lot 1673 Rousset

CLIENT: PROJECT:

LOCATION:

SURFACE LEVEL: 46.9 m AHD* BORE No: 55 EASTING: 388648 **NORTHING:** 6491405 **DIP/AZIMUTH:** 90°/--

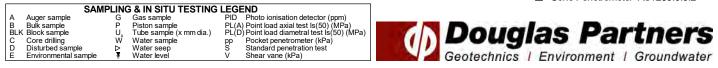
PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

\square		Description	<u>.0</u>		Sam		& In Situ Testing		Dumania Danatara tan Tant		
ᆋ	Depth (m)	of	Graphic Log	e	th	Sample	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)		
	(,	Strata	ō	Type	Depth	Sam	Results & Comments	>	5 10 15 20		
	0.06	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown and grey-brown, with silt, trace rootlets, moist. / SAND SP: fine to medium grained, grey-brown, trace silt, moist, very loose. Bassendean Sand.	<i>X</i>)X			5					
$\left \right $	- 0.5	becoming loose to medium dense from 0.45 m depth.			-0.5-						
46	- 1	Bore discontinued at 0.5m (Target depth)									
45	- - -2								-2		
	-										
44									-3		
	-										

RIG: 110 mm diameter hand auger

DRILLER: AA

LOGGED: AA


CASING: N/A

TYPE OF BORING: Hand auger

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

Stockland Development Pty Ltd

Road, Mariginiup, WA

Proposed Residential Development

Lot 803 Coogee Road and Lot 1673 Rousset

CLIENT: PROJECT:

LOCATION:

SURFACE LEVEL: 47.1 m AHD* BORE No: 56 EASTING: 389196 **NORTHING:** 6491027 **DIP/AZIMUTH:** 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

	Description	<u>.</u>	Sampling & In Situ Testing								
Depth (m)	of	Graphic Log	ЭС				Water	Dynamic Penetrometer Test (blows per 150mm)			
(,	Strata	Ū	Type	Depth	Sample	Results & Comments	>	5 10 15 20			
4 - 0.	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace roots and rootlets, moist.	<u>X</u>						-			
- - - 0.	SAND SP: fine to medium grained, grey-brown, trace silt, moist, medium dense. Bassendean Sand.		—D	-0.5-							
	Bore discontinued at 0.5m (Target depth)										
2 2 								-2			
- - -3								-3			

RIG: 110 mm diameter hand auger TYPE OF BORING: Hand auger

DRILLER: AA

LOGGED: AA

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 Sand Penetrometer AS1289.6.3.3 m. Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

Douglas Partners

Geotechnics | Environment | Groundwater

SURFACE LEVEL: 47.3 m AHD* BORE No: 57 **EASTING:** 389478 **NORTHING:** 6490998 DIP/AZIMUTH: 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Water Dynamic Penetrometer Test Depth Log 쩐 Sample of Depth (blows per 150mm) Results & Comments (m) Type Strata 10 15 20 TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist. 0.15 SAND SP: fine to medium grained, grey-brown, trace silt, moist, medium dense. Bassendean Sand. 0.5 -D -0.5 Bore discontinued at 0.5m (Target depth) 9 -2 -2 <u>ب</u> - 3 - 3

RIG: 110 mm diameter hand auger TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd

Road, Mariginiup, WA

Proposed Residential Development

Lot 803 Coogee Road and Lot 1673 Rousset

DRILLER: AA

LOGGED: AA

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 \boxtimes m. Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W Core drilling Disturbed sample Environmental sample CDE ₽

LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3

Stockland Development Pty Ltd

Road, Mariginiup, WA

Proposed Residential Development

Lot 803 Coogee Road and Lot 1673 Rousset

CLIENT: PROJECT:

LOCATION:

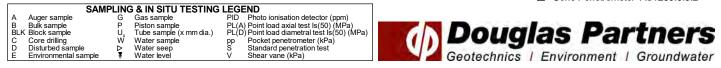
SURFACE LEVEL: 48.6 m AHD* BORE No: 58 EASTING: 389602 **NORTHING:** 6490631 **DIP/AZIMUTH:** 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	. <u>0</u>		Sam	pling	& In Situ Testing					
뉟	Depth (m)	of	Graphic Log	ЭС				Water	Dynamic Penetrometer Test (blows per 150mm)			
	()	Strata	ō	Type	Depth	Sample	Results & Comments	>	5 10 15 20			
-	0.15 -	TOPSOIL/SAND SP-SM: fine to medium grained, grey-brown, with silt, trace rootlets, moist. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.										
-		- becoming pale grey from 0.4 m depth.										
ŀ	0.5	Bore discontinued at 0.5m (Target depth)	<u> </u>	—D—	-0.5-							
48	1											
-	-2								-2			
-												
	3											
-	.3								-3			

RIG: 110 mm diameter hand auger TYPE OF BORING: Hand auger

DRILLER: GG


LOGGED: GG

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

Stockland Development Pty Ltd

Road, Mariginiup, WA

Proposed Residential Development

Lot 803 Coogee Road and Lot 1673 Rousset

CLIENT: PROJECT:

LOCATION:

SURFACE LEVEL: 46.2 m AHD* BORE No: 59 EASTING: 388736 **NORTHING:** 6490461 **DIP/AZIMUTH:** 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

	Description										
R	Depth	Description of	Graphic Log				č		Dynamic Penetrometer Test (blows per 150mm)		
	(m)	Strata	Gra	Type	Depth	amp	Results & Some and So	Ň			
		SAND SP: fine to medium grained, dark grey-brown, trace silt and rootlets, moist, loose. Bassendean Sand.				S			5 10 15 20		
Ī	0.5	Bore discontinued at 0.5m (Target depth)	~ 	—D—	-0.5-						
45	1	Bole discontinued at 0.5hr (Target deput)									
44	2							-	-2		
43	3							- - - - - - - - - -	-3		

RIG: 110 mm diameter hand auger TYPE OF BORING: Hand auger

DRILLER: AA

LOGGED: AA

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5

m. SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDE ₽

Douglas Partners Geotechnics | Environment | Groundwater

Sand Penetrometer AS1289.6.3.3

Cone Penetrometer AS1289.6.3.2

Stockland Development Pty Ltd

Road, Mariginiup, WA

Proposed Residential Development

Lot 803 Coogee Road and Lot 1673 Rousset

CLIENT: PROJECT:

LOCATION:

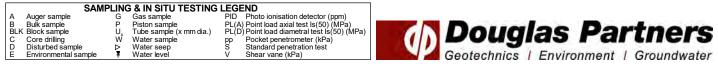
SURFACE LEVEL: 52.9 m AHD* BORE No: 60 EASTING: 389343 **NORTHING:** 6490373 **DIP/AZIMUTH:** 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	jic		Sam		& In Situ Testing	<u> </u>	
묍	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata		Ţ	ă	Sar	Comments		5 10 15 20 · · · · · ·
	- 0.1	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist.	<u>l l l</u>						
ŀ	-	SAND SP: fine to medium grained, grey-brown, trace silt, moist, medium dense. Bassendean Sand.							
ł	-	- becoming yellow-brown from 0.3 m depth.							
· · · · · · ·		- becoming yellow-brown nom 0.5 m deput.							
-	- 1.5	Bore discontinued at 1.5m (Target depth)		—D—	—1.5—				
51	-2								-2
	- 3								-3
R	G· 110	mm diameter hand auger DRILLER: AA		1.00	GED	· 44	CASING	і 3. м	/ <u> </u>

TYPE OF BORING: Hand auger

DRILLER: AA


LOGGED: AA

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 48.7 m AHD* BORE No: 61 **EASTING:** 389710 **NORTHING:** 6490373 **DIP/AZIMUTH:** 90°/--

PROJECT No: 212040.00 **DATE:** 7/7/2022 SHEET 1 OF 1

	_	Road, Mariginiup, WA	5501				6490373 H: 90°/		SHEET 1 OF 1	
		Description	ic		Sam		& In Situ Testing	L	Well	
Ł	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
		TOPSOIL/SAND SP-SM: fine to medium grained, grey-brown, with silt, trace rootlets, moist.				0)			-	
-	0.15 -	SAND SP: fine to medium grained, grey, trace silt, moist. Bassendean Sand.							-	
	0.5	Bore discontinued at 0.5m (Target depth)	<u>·</u>	—D—	-0.5-				-	
- 40									-	
-	·1								-1	
-									-	
-									-	
-									-	
	-2								-2	
-									-	
-										
	-3								-3	

RIG: 110 mm diameter hand auger DRILLER: GG TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd

Proposed Residential Development

Lot 803 Coogee Road and Lot 1673 Rousset

LOGGED: GG

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 m.

	SAMPL	ING	& IN SITU TESTING	LEG									
A Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)								
B Bulk sample		Р	Piston sample		A) Point load axial test Is(50) (MPa)		Real			. 1	Page 1		-
BLK Block sample		U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)		1101		125	- 1 I	Par	THE	15
C Core drilling		w	Water sample	pp	Pocket penetrometer (kPa)		Dou		140				
D Disturbed sample		⊳	Water seep	S	Standard penetration test			-					
E Environmental sai	mple	Ŧ	Water level	V	Shear vane (kPa)		Geotechn	lics	I Envir	ron	ment /	Ground	water

Appendix C

Laboratory Test Certificates

AGGREGATE

SOIL

TEST REPORT - ASTM D2974-14 (Test Method C) Client: S7024 **Stockland Development Pty Ltd** Ticket No. **Client Address:** WG22.12208-12215_1_ORG Report No. **Project: Proposed Residential Development** Sample No. WG22.12208-12215 Lot 803 Coogee Road and Lot 1673 Rousset Road, Location: Date Sampled: Not Specified Mariginiup, WA Sample Identification: Various - See below Date Tested: 8/08/2022 **TEST RESULTS - Organic Content**

CONCRETE

CRUSHING

Sampling Me	thod:	Sampled by Client, Teste	ed as Received
Testing Comple	eted By:	WGLS - JG	
Furnace Tempera	ature (°C):	440	
Sample Number	Sample Identification	Ash Content (%)	Organic Content (%)
WG22 12208		07.2	27

WG22.12208	TP 1A, 0.4 m	97.3	2.7
WG22.12209	TP 3, 0.1 m	94.1	5.9
WG22.12210	TP 6, 0.1 m	98.5	1.5
WG22.12211	TP 18, 0.1 m	97.3	2.7
WG22.12212	TP 21, 1.0 m	93.0	7.0
WG22.12213	TP 26, 0.45 m	98.5	1.5
WG22.12214	TP 27, 0.1 m	97.6	2.4
WG22.12215	TP 36, 0.1 m	98.7	1.3

 Comments:

 Approved Signatory:

 Mame: Cody O'Neill

 Date: 07/October/2022

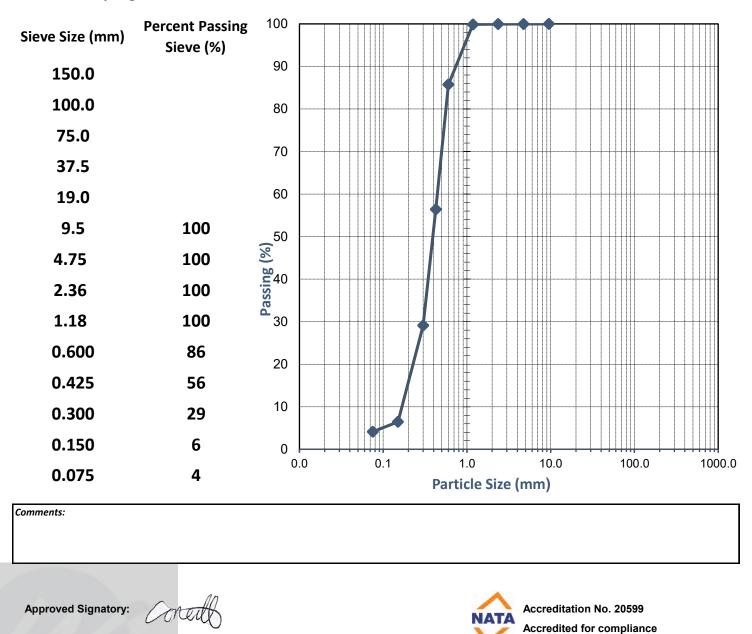
 Date: 07/October/2022

 235 Bank Street, Welshpool WA 6106

 Accreditation No. 20599

 Accredited for compliance

 with ISO/IEC 17025 - Testing


 This document shall not be reproduced except in full

	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	S7024
Client Address:	-	Report No.	WG22.12208_1_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12208
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, WA	Date Sampled:	Not Specified
Sample Identification:	TP 1A, 0.4 m	Date Tested:	05/08 - 08/08/2022

Sampling Method:

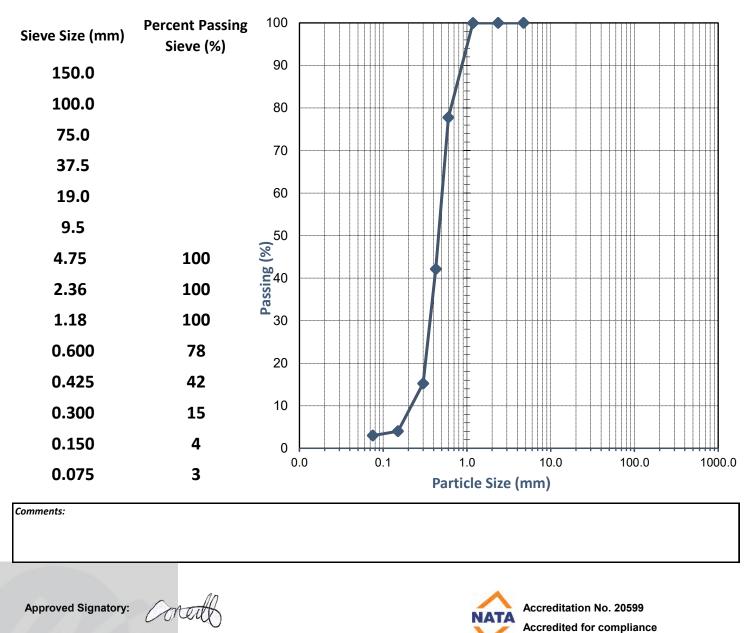
Sampled by Client, Tested as Received

Name: Cody O'Neill Date: 08/August/2022

235 Bank Street, Welshpool WA 6106

08 9472 3465

WORLD RECOGNISED


with ISO/IEC 17025 - Testing

	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	\$7024
Client Address:	-	Report No.	WG22.12209_1_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12209
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup,	Date Sampled:	Not Specified
Sample Identification:	TP 3, 0.1 m	Date Tested:	05/08 - 08/08/2022

Sampling Method:

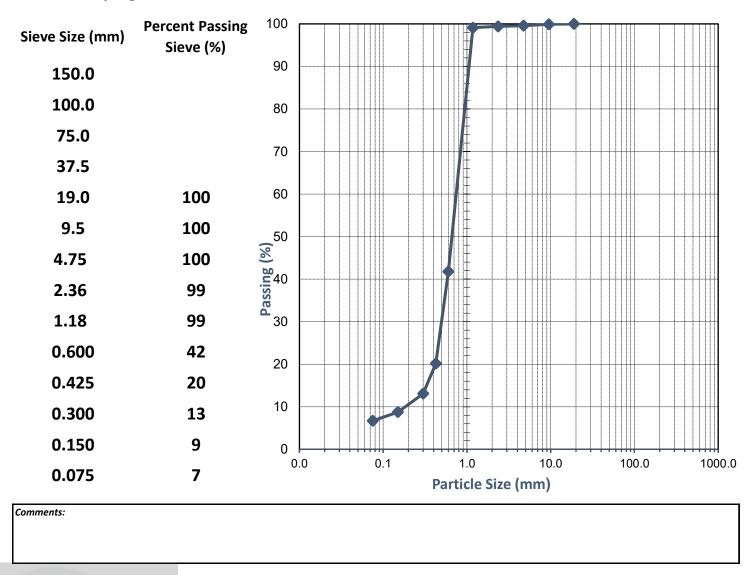
Sampled by Client, Tested as Received

Name: Cody O'Neill Date: 08/August/2022

235 Bank Street, Welshpool WA 6106

08 9472 3465

WORLD RECOGNISED


with ISO/IEC 17025 - Testing

	SOIL	AGGREGATE	CONCRETE	CRUSH	HING
		TEST REF	PORT - AS 1289.3.6.1		
Client:	Stockland [Development Pty Ltd		Ticket No.	S7024
Client Address:	-			Report No.	WG22.12210_1_PSD
Project:	Proposed R	Residential Development		Sample No.	WG22.12210
Location:	Lot 803 Coog	gee Road and Lot 1673 Rouss	et Road, Mariginiup, WA	Date Sampled:	Not Specified
Sample Identification:	TP 6, 0.1 m			Date Tested:	05/08 - 08/08/2022

Sampling Method:

Sampled by Client, Tested as Received

Approved Signatory:

Coneil

Name: Cody O'Neill Date: 08/August/2022

235 Bank Street, Welshpool WA 6106

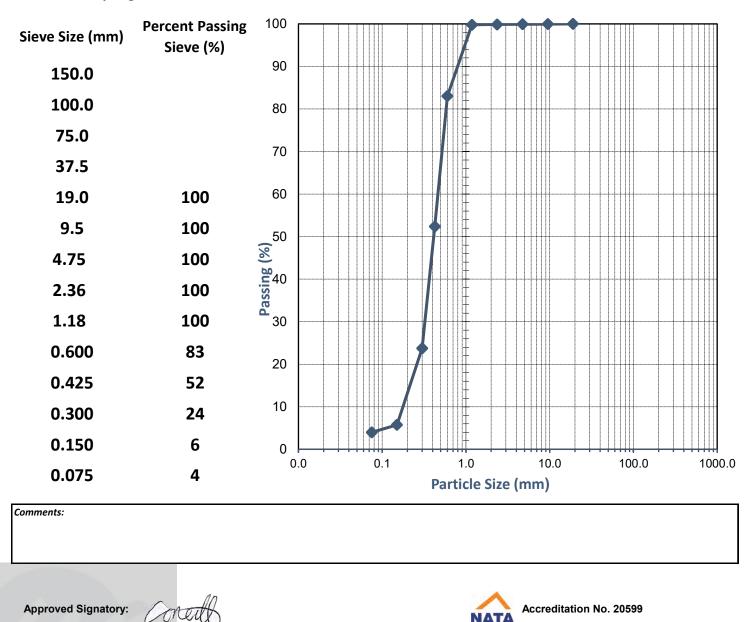
08 9472 3465

WORLD RECOGNISED

www.wals.com.au

Accreditation No. 20599

This document shall not be reproduced except in full


Accredited for compliance with ISO/IEC 17025 - Testing

	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	S7024
Client Address:	-	Report No.	WG22.12211_1_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12211
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup,	Date Sampled:	Not Specified
Sample Identification:	TP 18, 0.1 m	Date Tested:	05/08 - 08/08/2022

Sampling Method:

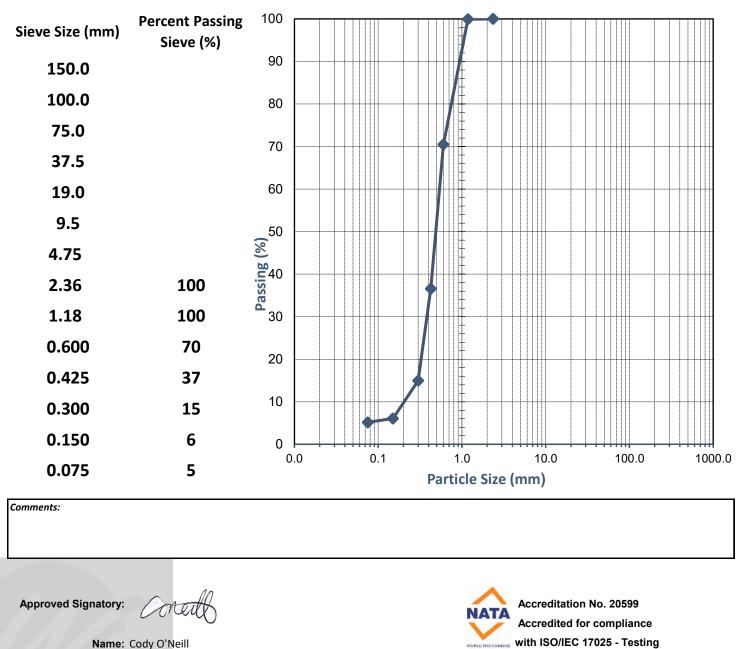
Sampled by Client, Tested as Received

Name: Cody O'Neill Date: 08/August/2022

235 Bank Street, Welshpool WA 6106

08 9472 3465

WORLD RECOGNISED


Accredited for compliance with ISO/IEC 17025 - Testing

	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	S7024
Client Address:	-	Report No.	WG22.12213_1_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12213
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup,	Date Sampled:	Not Specified
Sample Identification:	TP 26, 0.45 m	Date Tested:	05/08 - 08/08/2022

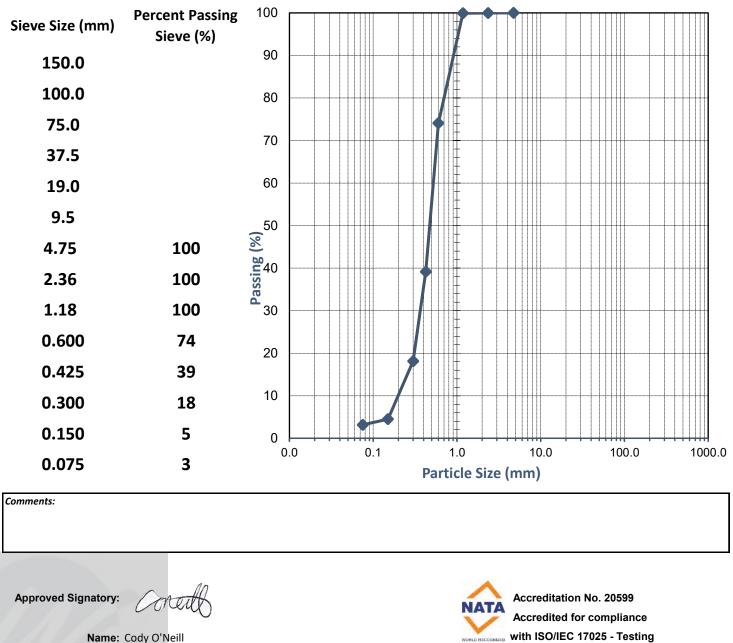
Sampling Method:

Sampled by Client, Tested as Received

Name: Cody O'Neill Date: 08/August/2022

235 Bank Street, Welshpool WA 6106

08 9472 3465


WORLD RECOGNISED

	SOIL A	GGREGATE	CONCRETE	E CRUSH	HING
		TEST REF	PORT - AS 1289.3.6.2	1	
Client:	Stockland Devel	opment Pty Ltd		Ticket No.	S7024
Client Address:	-			Report No.	WG22.12215_1_PSD
Project:	Proposed Reside	ential Development		Sample No.	WG22.12215
Location:	Lot 803 Coogee Ro	ad and Lot 1673 Rouss	et Road, Mariginiup, WA	Date Sampled:	Not Specified
Sample Identification:	TP 36, 0.1 m			Date Tested:	05/08 - 08/08/2022

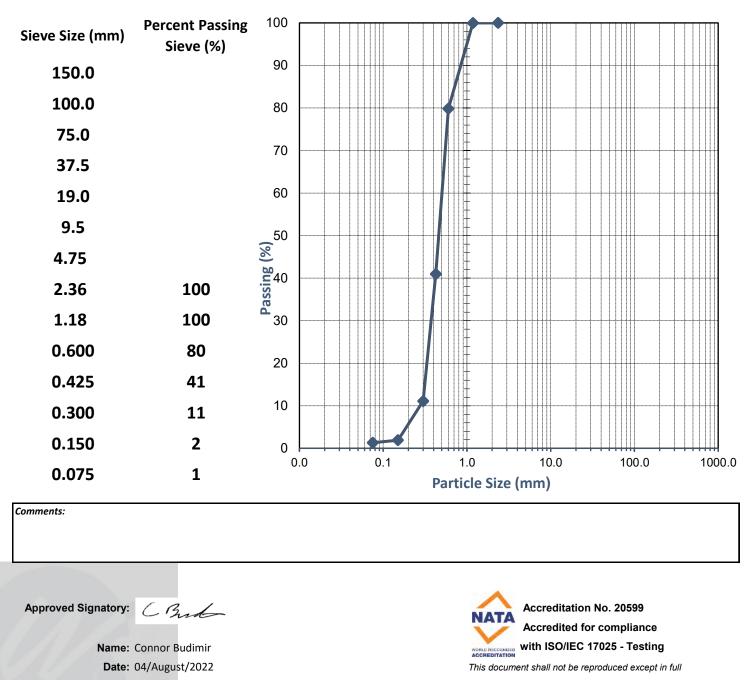
Sampling Method:

Sampled by Client, Tested as Received

Name: Cody O'Neill Date: 08/August/2022

235 Bank Street, Welshpool WA 6106

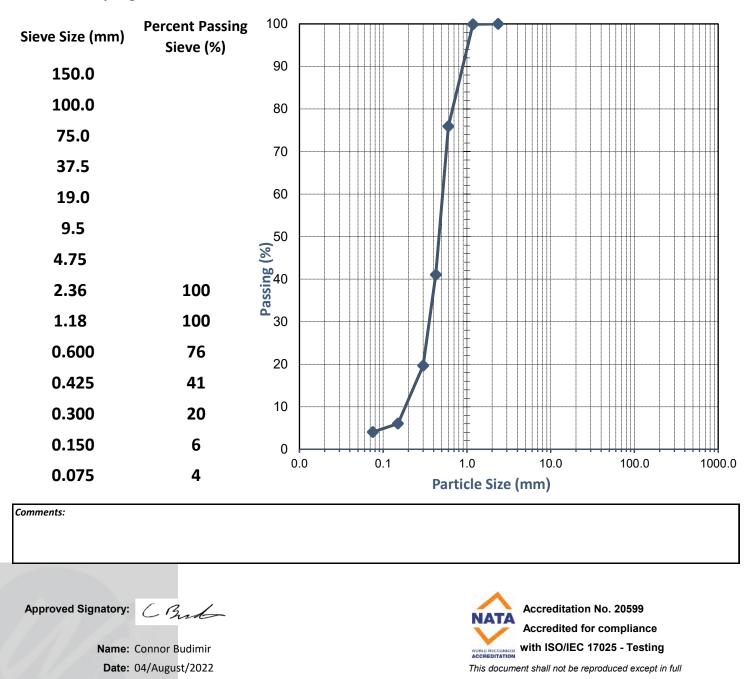
08 9472 3465


WORLD RECOGNISED

	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	S7006
Client Address:	-	Report No.	WG22.12030_1_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12030
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup,	Date Sampled:	Not Specified
Sample Identification:	Perm 55, 0.5 m	Date Tested:	3/8 - 4/8/22

Sampling Method:

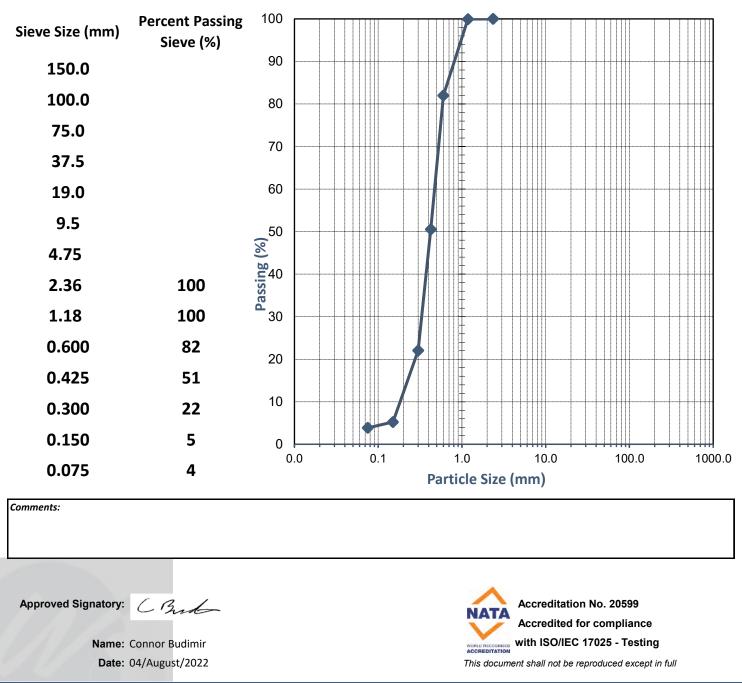
Sampled by Client, Tested as Received


235 Bank Street, Welshpool WA 6106

	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	S7006
Client Address:	-	Report No.	WG22.12031_1_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12031
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup,	Date Sampled:	Not Specified
Sample Identification:	Perm 56, 0.5 m	Date Tested:	3/8 - 4/8/22

Sampling Method:

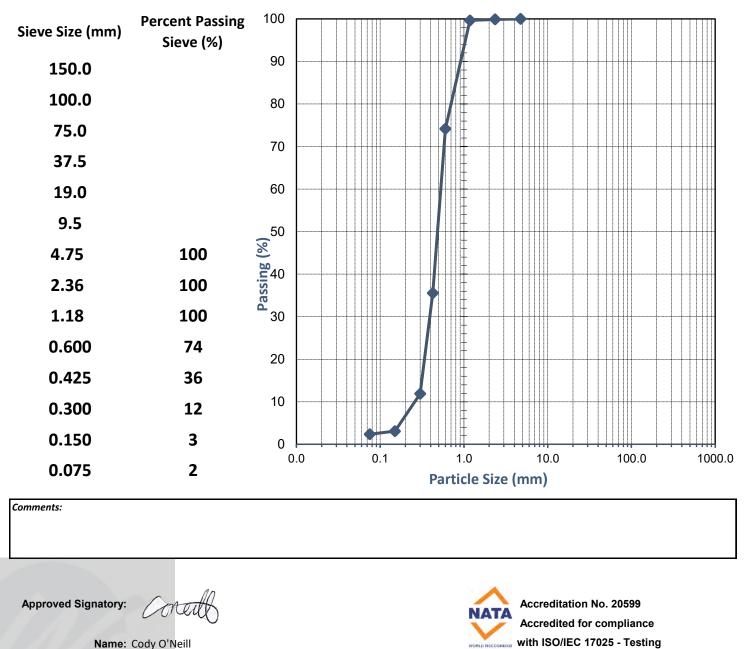
Sampled by Client, Tested as Received



	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	S7006
Client Address:	-	Report No.	WG22.12032_1_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12032
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup,	Date Sampled:	Not Specified
Sample Identification:	Perm 57, 0.5 m	Date Tested:	3/8 - 4/8/22

Sampling Method:

Sampled by Client, Tested as Received


235 Bank Street, Welshpool WA 6106

	SOIL AGGREGATE CONCRE	TE CRUSHING
	TEST REPORT - AS 1289.3	.6.1
Client:	Stockland Development Pty Ltd	Ticket No. S7006
Client Address:	-	Report No. WG22.12033_1_PSD
Project:	Proposed Residential Development	Sample No. WG22.12033
Location:	Lot 803 Coogee Road and Lot 1673 Rousset Road, Mariginiup, W	A Date Sampled: Not Specified
Sample Identification:	Perm 59, 0.5 m	Date Tested: 04/08 - 05/08/2022

Sampling Method:

Sampled by Client, Tested as Received

Name: Cody O'Neill Date: 05/August/2022

235 Bank Street, Welshpool WA 6106

08 9472 3465

WORLD RECOGNISED

Appendix B

Report on Preliminary Geotechnical Investigation – Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA

Report on Preliminary Geotechnical Investigation

Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA

> Prepared for Stockland Development Pty Ltd

> > Project 212040.00 October 2022

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	212040.00	Document No.	R.002.Rev0
Document title	Report on Prelimir	nary Geotechnical Inve	stigation
	Proposed Resider	ntial Development	
Site address	Stage 2 - Rousset	Road, Mariginiup, WA	
Report prepared for	Stockland Develop	oment Pty Ltd	
File nome	212040.00.R.002.	Rev0.DP Report - Stag	ge 2 - Rousset Road, Mariginiup,
File name	WA.docx		

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Brendan Divilly	Dan Reaveley & Frederic Verheyde	26 October 2022

Distribution of copies

	1		
Status	Electronic	Paper	Issued to
Revision 0	1	-	Mr Mathew Johns, Stockland Development Pty Ltd
	1	-	Mr Brad Marshall, Cossill & Webley

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	FPin	26 October 2022
Reviewer	And	26 October 2022

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 36 O'Malley Street Osborne Park WA 6017 Phone (08) 9204 3511

Table of Contents

Page

1.	Introd	uction		1					
2.	Site D	escriptio	on	2					
3.	Field	Work Methods2							
4.	Field	Work Re	esults	3					
	4.1	Ground	Conditions	3					
	4.2	Ground	water	4					
	4.3	Permea	ability	4					
5.	Labor	atory Te	sting	4					
6.	Propo	sed Dev	/elopment	5					
7.	Comn	nents		5					
	7.1	Site Su	itability	5					
	7.2	Site Cla	assification	6					
	7.3	Excava	tion Conditions	6					
	7.4	Geotec	hnical Suitability for Re-Use of In Situ Materials						
		7.4.1	Re-Use of Natural Sand						
		7.4.2	Topsoil						
	7.5		eparation						
		7.5.1 7.5.2	Site Stripping Proof Rolling and Compaction						
		7.5.3	Imported Fill						
		7.5.4	Fill Placement						
		7.5.5	Compaction Testing	8					
	7.6	Founda	tion Design	9					
	7.7	Design	Parameters for Excavations and Retaining Systems	9					
		7.7.1	Safe Batter Slopes						
	7.0	7.7.2	Retaining Structures						
	7.8 Pavement Design Parameters								
	7.9		vater Drainage and Permeability						
			Investigation						
8.	References11								
9.	Limitations11								

Appendix A: About This Report

Appendix B:	Drawings	
	Test Pit Logs	
	Borehole Logs	
Appendix C:	Laboratory Test Certificates	

Report on Preliminary Geotechnical Investigation Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA

1. Introduction

This report presents the results of a preliminary geotechnical investigation undertaken for the proposed Stage 2 residential development on Rousset Road in Mariginiup, WA. The investigation was commissioned in an email dated 16 June 2022 by Mr Mathew Johns of Stockland Development Pty Ltd and was undertaken in accordance with Douglas Partners' proposal P212040.00.P.001.Rev1 dated 5 May 2022.

It is understood that the proposed development will comprise a residential subdivision, including lots, pavement, services and public open space.

The aim of the investigation was to assess the subsurface soil and groundwater conditions across the site at limited test locations in order to provide preliminary comments on:

- The suitability of the site for urban development, from a geotechnical standpoint.
- Uncontrolled fill, rock, peaty soils and depth of topsoil, where encountered at the test locations.
- Excavation conditions and depths of available sand for re-use, where encountered.
- The suitability of site soils as fill, including advice regarding the preparation, placement and compaction of topsoil and sand, including the suitability of the use of topsoil by blending with clean sand for use as structural fill.
- Site preparation, compaction, remediation and earthworks to allow for urban development.
- A preliminary site classification in accordance with AS 2870-2011.
- Geotechnical design parameters for retaining wall design and foundation design, including soil friction angle and allowable bearing capacity.
- Suitable design parameters for pavements, including a suitable California bearing ratio (CBR) for the subgrade encountered at the site and provide comments on road construction.
- The permeability of shallow soils and the suitability of the site to accept on-site stormwater disposal.
- The groundwater level and perched water table levels beneath the site at the time of the field work, if encountered.
- Recommendations for further geotechnical investigation.

The investigation included the excavation of 18 test pits, four in situ infiltration tests and laboratory testing of selected samples. The details of the field work are presented in this report, together with comments and recommendations on the items listed above.

2. Site Description

The site comprises an area of approximately 126 ha in size and is identified as Lot 2 and Part Lot 3335 Rousset Road, and Lot 7542 McCaffrey Road, in Mariginiup, WA. It is bordered by Rousset Road to the west, Boundary Road to the east, rural residential properties and undeveloped land to the south, and similar undeveloped land to the north (Refer to Drawing 1, Appendix B).

At the time of the field work, the site was generally vacant and was covered in sparse bushland and cleared areas. Vegetation generally comprised medium to large sized trees, shrubs and short grass.

Based on publicly available LiDAR data, the ground surface level across the site varies between approximately RL 47 m AHD and RL 57 m AHD.

The Muchea 1:50,000 Environmental Geology sheet (shown on Drawing 1) indicates that shallow sub surface conditions across the majority of the northern half of the site comprise Bassendean Sand overlying clayey deposits of the Guildford Formation (shown on the drawing as S10). The majority of the southern half of the site consists of Bassendean Sand (S8). The central area of the site is also mapped as comprising a water body, surrounded by peaty clay associated with swamp deposits (Cps). Other small areas of peaty clay associated with swamp deposits are indicated to occur in isolated parts of the site.

The Perth Groundwater Atlas indicates that the groundwater level ranged between approximate levels of RL 45.5 m AHD and RL 47.5 m AHD in May 2003, approximately 2 m to 11 m below existing surface levels.

Published acid sulfate soil risk mapping indicates the majority of the site is located in an area mapped as "moderate to low risk of acid sulfate soils occurring within 3 m of natural soil surface". The remaining portions of the site are mapped as "high to moderate risk of acid sulfate soils occurring within 3 m of natural soil surface". These areas mapped as "high to moderate" risk are associated with the water bodies and peaty clay swamp deposits as depicted by the published geological mapping.

3. Field Work Methods

Field work for the investigation was carried out on 6 and 7 July 2022 and comprised:

- The excavation of 18 test pits (Locations 101 to 118).
- Perth sand penetrometer (PSP) testing adjacent to each test pit location.
- Four in situ infiltration tests (Locations 123 to 126).

The test pits were excavated to a maximum depth of 3 m using an 8-tonne backhoe, equipped with a 450 mm wide toothed bucket. PSP tests were carried out at the test pit locations in accordance with AS 1289.6.3.3 to assess the in-situ density of the shallow soils.

Each test pit was logged in accordance with AS 1726–2017 by a geotechnical engineer. Soil samples were recovered from selected locations for subsequent laboratory testing.

The infiltration tests were performed using the falling head method at a depth of 1 m at locations 123 to 126.

Test locations were determined using a handheld GPS and are marked on Drawing 2. Approximate ground surface levels at the test locations have been derived from publicly available LiDAR data (DEM derived from 5 m grid).

4. Field Work Results

4.1 Ground Conditions

Logs of the ground conditions and results of the field testing are presented in Appendix B, together with notes defining descriptive terms and classification methods, in Appendix A.

Ground conditions across the site generally comprised:

- **Topsoil (SAND SP and SP-SM)** dark grey-brown sandy and organic sandy topsoil, trace silt to with silt, between 0.05 m and 0.2 m thick at all test locations.
- SAND (SP and SP-SM) fine to medium grained, dark grey-brown, grey, brown and yellow-brown sand, trace silt to with silt underlying the topsoil to termination depths of between 1 m and 3 m at the test locations. The sand was generally in a loose condition, becoming medium dense at depth. The depth and level of the base of the loose soils encountered at the test locations are shown in Table 1.
- Localised Cemented Soils (SAND SP and Cemented Silty SAND SM) dark brown, pale brown and orange-brown weakly cemented sand and silty sand ('coffee rock'), from depths between 1.0 m and 2.2 m extending to termination depths between 1.7 m and 3 m at locations 102, 111 and 115.
- Localised Organic Soils (PEATY SAND and ORGANIC SAND SP-SM) dark grey-brown peaty sand and brown organic sand with silt, to a depth of 0.4 m and 1.35 m respectively at location 107.

Test Location	Ground Surface Level ^[1] (m AHD)	Depth of Loose Soil (m)	Level of Base of Loose Soil ^[2] (m AHD)
101	51.3	1.05	50.2
102	52.5	1.05	51.4
103	49.8	0.9	48.9
108	49.3	0.9	48.4
109	49.6	1.1	48.5
112	50.8	0.9	49.9
113	55.9	0.9	55.0
114	51.8	1.15	50.6
117	52.7	0.9	51.8
118	49.3	0.9	48.4

Table 1: Summary of Depth and Level of Base of Loose Soils

Test Location	Ground Surface Level ^[1] (m AHD)	Depth of Loose Soil (m)	Level of Base of Loose Soil ^[2] (m AHD)
125	50.5	0.75	49.8
126	51.4	deeper than 1.0 m	less than 50.3

Notes for Table 1:

[1]: Approximate surface level derived from LiDAR data.

[2]: Level of Base of Loose Soils = Estimated Surface Level – Depth of Loose Soils. Levels should be considered as approximate.

4.2 Groundwater

Groundwater was observed at a depth of 2.3 m (RL 45.4 m AHD) at test location 116 on 7 July 2022. Groundwater was not encountered within testing depth at the other test pits. The test pits were immediately backfilled following sampling, which precluded longer-term monitoring of groundwater levels.

It should be noted that groundwater levels are affected by climatic conditions and land usage and will therefore vary with time.

4.3 Permeability

Four in-situ permeability tests using the falling head method were carried out at depths of 1.0 m at locations 123 to 126. An estimated permeability value has been derived from the in situ test data using a formula based on a calculation by Hvorslev (1951). Results of the permeability analysis are summarised in Table 2.

Test Location	Depth (m)	Measured Permeability (m/day) ^[1]	In situ Ground Conditions at Testing Depth
123	1.0	>20	SAND SP, trace silt, medium dense
124	1.0	>20	SAND SP, trace silt, medium dense
125	1.0	12	SAND SP, trace silt, medium dense
126	1.0	>20	SAND SP, trace silt, loose

Table 2: Summary of Permeability Analysis

5. Laboratory Testing

A geotechnical laboratory testing programme was carried out by a NATA registered laboratory and comprised the determination of

- the particle size distribution of four samples; and
- the organic content of six samples.

The test report sheet is given in Appendix C and the results are summarised in Table 3.

Test Location	Depth (m)	Fines (%)	Sand (%)	Gravel (%)	Organic Content (%)	Material
106	0.4	6	94	0	1.3	SAND SP-SM, with silt
107	0.3	27	63	0	25.7	PEATY Silty SAND SM
107	1.0	9	91	0	4.0	ORGANIC SAND SP-SM, with silt
111	0.1	5	95	0	6.6	TOPSOIL / ORGANIC SAND SP, trace silt
111	2.8	-	-	-	0.8	SAND SP-SM, with silt
117	0.1	-	-	-	3.9	TOPSOIL / ORGANIC SAND SP, trace silt

 Table 3: Results of Laboratory Testing for Soil Identification

Where:

Fines = Particles finer than 75 μm.

Sand = Particles between 2.36 mm and 75 µm.

Gravel = Particles larger than 2.36 mm.

6. **Proposed Development**

It is understood that the proposed development will consist of a residential subdivision, with associated lots, services, pavements, and public open space. Earthworks across the site are anticipated to comprise large cut to fill operations. Proposed development plans were not available at the time of writing.

7. Comments

7.1 Site Suitability

The investigation indicates that the site is generally underlain by topsoil and sand as described in Section 4.1 above. In addition to the above, the testing across the site encountered some surficial loose sandy soils and an isolated area of peaty and organic sand (location 107). The layer of organic material is likely to require further assessment and delineation.

The encountered loose sand and buried organic soils are geotechnical constraints that will require consideration in the earthworks strategy for the site.

However, it is considered that following suitable site preparation, the site is generally suitable for the proposed residential development. Suitable site preparation should include removal or blending of the surficial topsoil, removal of any peaty soils and organic sand and suitable compaction of the loose soils across the site.

Based on this preliminary assessment, from a geotechnical standpoint, the land is considered to be physically capable of development, provided that the provisions outlined in the subsequent subsections of the report are incorporated in the development plans.

7.2 Site Classification

The shallow ground conditions beneath the site generally comprise loose sand, becoming medium dense with depth.

Based on the results of the investigation and in accordance with AS 2870-2011, a site classification 'Class P' applies to the site, owing to the presence of loose sand and areas of organic soils. It is considered that following suitable site preparation, the site could be re-classified as 'Class A'. Suitable site preparation includes in particular stripping or blending of the surficial topsoil, removal of any organic soils (eg location 107) and suitable compaction of all loose soils encountered in the upper zone of the soil profile across the majority of the site.

7.3 Excavation Conditions

The encountered ground conditions generally comprise sand. Conventional earthmoving equipment (such as large excavators and scrapers) should be generally suitable for excavations across the site within the encountered granular soils.

The weakly cemented sand encountered at locations 102, 111 and 115 could generally be excavated using an 8-tonne backhoe. Some provision for larger excavators would be prudent to excavate cemented materials, with associated possible low excavation rates.

7.4 Geotechnical Suitability for Re-Use of In Situ Materials

7.4.1 Re-Use of Natural Sand

The encountered shallow natural sand with trace fines, classified 'SP' in the logs in Appendix B, is considered geotechnically suitable for reuse as structural fill material provided it is free from organic matter and particles greater than 150 mm in size.

Isolated areas of the site which include sand with fines (classified as SP-SM), generally underlying the topsoil, would also be considered suitable for re-use as fill, however, with possibly a lower permeability than typically specified in general earthworks specifications (5 m/day). Therefore, if reusing the sand with fines is further considered, a detailed assessment of the permeability of these soils is recommended to assess any impact on its reuse with regards to drainage characteristics.

7.4.2 Topsoil

Topsoil was encountered across the site to depths of between 0.05 m and 0.2 m.

Based on the results of the investigation, the topsoil encountered across the site is generally considered suitable for reuse as part of a topsoil and clean sand blend, for use as a structural filling material, provided that the topsoil is suitably prepared, and the controls outlined below are adopted. A preliminary blending ratio of 3:1 (clean sand:topsoil) is suggested, based on observations made during the site investigation and the laboratory results regarding organic content.

It is suggested that any large roots or other oversized organics are first removed or screened from the topsoil/organic sand, prior to blending. Stripping the topsoil and passing through a mechanical screening plant is suggested.

Following screening, topsoil should be sufficiently mixed and blended with clean sand so that it forms a generally homogenous material. The use of earthwork plant to suitably turn over the two materials to form a blended material is recommended. The blending process should be assessed by a geotechnical engineer.

The blending of topsoil with clean sand will likely decrease the permeability of the sand, therefore some consideration should be given to possible adverse implication on site drainage, if blended topsoil material is used as fill material across the site. Consideration could be given to further assess the permeability of blended topsoil material at various blending ratios, to assess a suitable blending ratio and associated filling permeability. Douglas Partners would be pleased to further assist with this assessment if required.

7.5 Site Preparation

7.5.1 Site Stripping

All deleterious material, including vegetation and topsoil (if not blended,) should be stripped from the proposed development areas of the site.

Any tree roots remaining from clearing operations within the proposed development area should be completely removed to a depth of 0.6 m, and the excavation backfilled with material of similar geotechnical properties to the surrounding ground and suitably compacted.

Further assessment of the peaty and organic sand at location 107 is suggested to determine the extent of this unsuitable material. The occurrence of similar material elsewhere beneath the site cannot be precluded at this stage and therefore further geotechnical field assessment at a relatively high testing frequency during detailed design of the proposed development should be considered to assess the occurrence of otherwise of such material across the proposed development area.

7.5.2 **Proof Rolling and Compaction**

Following the site stripping (Section 7.5.1), and excavation to formation level (in areas of cut) it is recommended that the exposed ground be proof rolled with a heavy smooth drum roller (say minimum 15 tonnes deadweight) in vibrating mode.

Any areas that show signs of excessive deformation during compaction should be compacted until deformation ceases or, alternatively, the poor-quality material should be excavated and replaced with suitable structural fill and compacted.

Owing to the depth of loose sand across the site, it is suggested that significant compactive effort using heavy vibrating rollers (say 15 tonne minimum) is applied to the subgrade following stripping.

Following proof rolling to confirm suitable foundation material, the site should be tested using a Perth Sand Penetrometer (PSP) to a depth of 1 m below formation level, or shallower refusal, by a suitably experienced geotechnical engineer.

Compaction control of sand could be carried out using a PSP test in accordance with test method AS 1289.6.3.3. All areas within proposed building envelopes and pavement areas should be compacted to achieve a minimum blow count of 8 blows per 300 mm penetration to a depth of not less than 1.0 m below foundation level.

7.5.3 Imported Fill

If required, imported fill should comprise free draining, cohesionless, well graded sand that:

- contains less than 5% by weight of particles less than 75 microns in size;
- contains no particles greater than 150 mm in size; and
- is free of organic and other deleterious materials.

It is recommended that test certificates are reviewed and approved by the geotechnical engineer prior to importing material to site.

Other materials could be considered, provided they are granular and non-reactive, and following review by a geotechnical engineer.

7.5.4 Fill Placement

Any fill should be placed in layers not exceeding 300 mm loose thickness and compacted near optimum moisture content with a roller of say 15 tonne deadweight.

7.5.5 Compaction Testing

Sand fill should be compacted to 95% relative to modified maximum dry density (MMDD). Compaction control of the sand fill could be carried out using a Perth sand penetrometer (PSP) test in accordance with test method AS 1289.6.3.3. All areas within the proposed building and pavement envelopes should be compacted to achieve a minimum blow count of 8 blows per 300 mm penetration to a depth of not less than 1.0 m below foundation or subgrade level, or a correlation between MMDD and PSP blow counts should be established to determine the compaction target.

The top 300 mm in the base of any excavation should be re-compacted using a vibratory plate compactor prior to construction of any footings. Inspection of footing excavations by a geotechnical engineer is also recommended.

7.6 Foundation Design

Shallow foundation systems comprising slab, pad and strip footings should be suitable to support typical one and two storey residential buildings.

Footings of buildings covered by AS 2870-2011 should be designed to satisfy the requirements of this standard for the site classification discussed in Section 7.2, provided that site preparation is carried out in accordance with Section 7.5.

If a proposed building is not covered by AS 2870-2011 then the foundation should be designed using engineering principles. Following suitable site preparation and densification of the loose sand across the site, a preliminary allowable bearing pressure of 200 kPa is considered suitable for pad footings up to 3 m in width, or strip footings up to 1.5 m wide, founded at a minimum depth of 0.5 m in sandy soils that are at least medium dense. This should ensure that total and differential settlements are less than 20 mm. It is recommended that suitable allowable bearing pressures for building not covered by AS2870 be further assessed once details of these structures are known.

The majority of the settlement indicated above is anticipated to occur as loads are applied during construction. Further long-term settlements are likely to be less than half of the settlement estimated above.

The base of any foundation excavation should be compacted and assessed by a geotechnical engineer.

7.7 Design Parameters for Excavations and Retaining Systems

7.7.1 Safe Batter Slopes

It is recommended that batter slopes not steeper than 1.5H:1V (horizontal : vertical) be adopted for temporary excavations not deeper than 3 m in sand material above groundwater. For deeper excavations (above groundwater), average batter slopes not steeper than 2H:1V should be adopted, with horizontal benches at least 1 m wide at 3 m height intervals. These recommended batter angles should be re-assessed if loads are to be applied near the top of the batter or if there is a possibility of substantial overland water flow. Permanent batter slopes should not be steeper than 2H:1V.

The above safe batter slope angles are not suitable below groundwater, under which case dewatering or the use of positive excavation supports (next section) should be considered.

7.7.2 Retaining Structures

The design of flexible or rigid walls should be undertaken using a triangular pressure distribution and the earth pressure parameters given in Table 4. In addition to the soil pressure, wall design should also allow for external loads such as buildings, live loads, hydrostatic pressure or construction activities.

Soil Type	Soil Unit Weight Above Water Table γ (kN/m ³)	Drained Angle of Friction Φ' (Degrees)	Undrained Shear Strength C _U (kPa)	Coefficient of Earth Pressure – Active K _a	Coefficient of Earth Pressure – at Rest K ₀	Coefficient of Earth Pressure – Passive K _p
Sand - loose	18	28	0	0.36	0.53	2.7
Sand – medium dense	20	32	0	0.31	0.47	3.2

7.8 Pavement Design Parameters

As noted in Section 4.1, the shallow soils across the site generally comprise sand. Based on field observations and Douglas Partners' experience, a preliminary subgrade CBR of 12% is recommended for the design of flexible pavements founded on sand subgrade, provided that such subgrade is compacted to achieve a dry density ratio of not less than 95% relative to modified compaction.

7.9 Stormwater Drainage and Permeability

The results of the permeability testing in Section 4.3 indicate a field permeability value of between 12 m/day and greater than 20 m/day for the shallow sand across the site.

Observed ground conditions and permeability results indicate that on-site stormwater disposal using soakwells and sumps is generally feasible into the encountered sand that includes some trace of fines (classified 'SP' on the logs in Appendix B) where ground conditions at the base of such systems comprise sand and there is sufficient clearance above groundwater and any impervious layers such as cemented sand. A minimum clearance of 0.5 m is suggested between the base of drainage systems and groundwater, organic sand or cemented sand.

The infiltration capability of sand often reduces over time due to silt build up at the base of soakwells and sumps, and therefore such systems should be regularly maintained.

7.10 Further Investigation

It is suggested that further investigation by way of test pits is undertaken in particular in the vicinity of location 107 to determine the extent of the buried organic soils and to further characterise the material properties. Further test pitting across the site, at a higher frequency than currently undertaken, is also recommended in order to assess whether similar unsuitable material occurs elsewhere beneath the site, as previously discussed in Section 7.5.1.

Cone penetration testing is also suggested across the site, particularly in proposed areas of deep cut.

8. References

AS 1289.6.3.3. (1997). Methods for testing soils for engineering purposes - Soil strength and consolidation tests - Determination of the penetration resistance of a soil - Perth sand penetrometer test. Reconfimed 2013: Standards Australia.

AS 1726. (2017). Geotechnical Site Investigations. Standards Australia.

AS 2870. (2011). Residential Slabs and Footings. Standards Australia.

Department of Environment. (2004). Perth Groundwater Atlas, Second Edition, Dec 2004.

Hvorslev, M. J. (1951). *Time lag and soil permeability in groundwater observations.* US Army Corps of Engineers Waterways Experiment Observation Station, Bulletin 36, Vicksburg, Mississippi.

9. Limitations

Douglas Partners (DP) has prepared this report for this project at Lot 2 and Part Lot 3335 Rousset Road and Lot 7542 McCaffrey Road in Mariginiup, WA in accordance with DP's proposal dated 5 May 2022 and acceptance received from Mr Mathew Johns dated 16 June 2022. The work was carried out under an Agreement dated 10 August 2022. This report is provided for the exclusive use of Stockland Development Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions

across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the geotechnical components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope of work for this investigation/report did not include the assessment of surface or sub-surface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of fill of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such fill may contain contaminants and hazardous building materials.

Douglas Partners Pty Ltd

Appendix A

About This Report

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In fine grained soi	Is (>35% fine	s)
Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace sand

In coarse grained soils (>65% coarse)

- with clays or silts	5	
Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils (>65% coarse) - with coarser fraction

Term	Proportion	Example
	of coarser	
	fraction	
And	Specify	Sand (60%) and
		Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace
		gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

,

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.
 - Soil tends to stick together. Sand forms weak ball but breaks

easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

A·A·A·A A.A.A.A	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Clay

Peat

Silty clay

Sandy clay

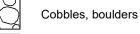
Gravelly clay

Shaly clay

Silt

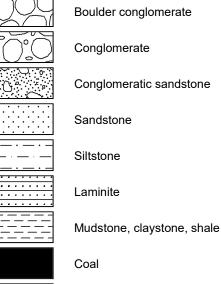
Clayey silt

Sandy silt


Sand

Clayey sand

Silty sand


Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

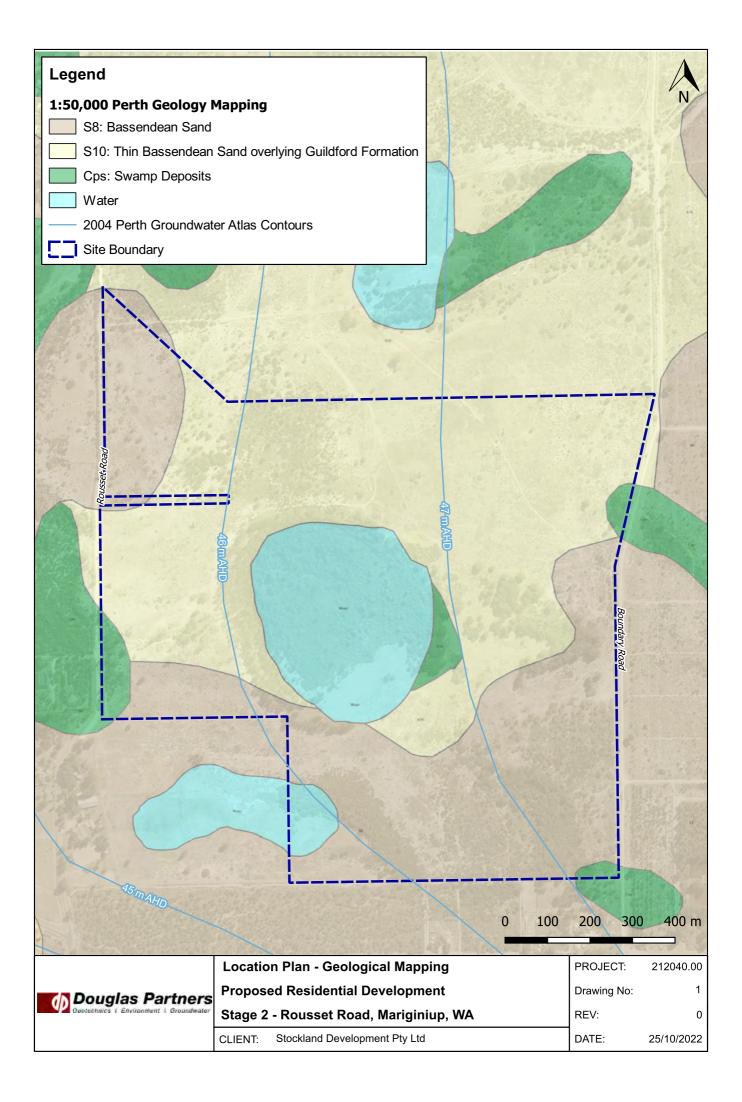
Gneiss

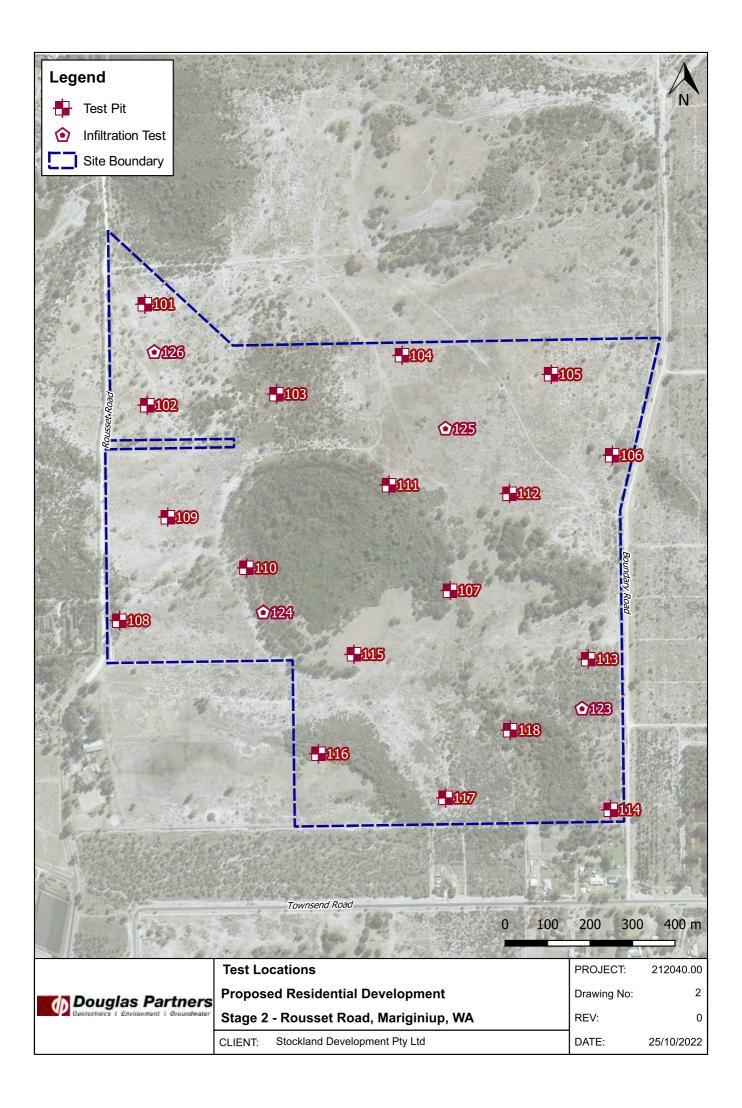
Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote


Tuff, breccia


Porphyry

May 2017

Appendix B

Drawings Test Pit Logs Borehole Logs

SURFACE LEVEL: 51.3 m AHD* PIT No: 101 EASTING: 389851 **NORTHING:** 6490993

PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description	Dic		Sam		& In Situ Testing	L.	Dumemie Denetrometer Test				
⊾	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)				
		Strata	G	тy	De	Sar	Comments	-	5 10 15 20				
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	ΥŇ										
-5-		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							Ϊ				
		- becoming pale grey from 0.5 m depth.											
20 	- 1 - - -	- becoming medium dense from 1.05 m depth.											
	- 1.5 -	Pit discontinued at 1.5m (Collapsing conditions)	<u>(* . * . *)</u>										
	-2												
49													
	-3												
48													
	10 M				A TANK	10							

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 Inface level connect

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 U
 Tube sample (x mm dia.)
 PL(A) Point toad aimetral test 18(50) (MPa)

 W
 Water sample (x mm dia.)
 PL(D) Point toad aimetral test 18(50) (MPa)

 P
 W
 Water sample (x mm dia.)

 W
 Water seep
 S

 Standard penetration test
 V

 Water level
 V

 Shear vane (kPa)
 V

 A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDL

Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

□ Cone Penetrometer AS1289.6.3.2

 SURFACE LEVEL:
 52.5 m AHD*
 PIT No:
 102

 EASTING:
 389857
 PROJECT No:

 NORTHING:
 6490756
 DATE:
 6/7/2

PIT No: 102 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

		Description			Sam		& In Situ Testing	-	Dynamic Penetrometer Test		
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		etrometer Test er 150mm)	
52	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Sand derived from Tamala Limestone. - becoming pale yellow from 0.4 m depth.		D	0.1						
51	- 1 	 becoming years brown non 0.0 m depth. becoming orange-brown and weakly cemented from 1.5 m depth. 									
-	- 2 - 2 	Pit discontinued at 1.7m (Collapsing conditions)									
	- 3										
	-										

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

CLIENT: PROJECT:

LOCATION:

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

	SAIVIPI		0 & IN SITU LESTING I	LEGE	ND	L
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
	Bulk sample	Ρ	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

SURVEY DATUM: MGA94 Zone 50 J

CLIENT: PROJECT: LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA
 SURFACE LEVEL:
 49.8 m AHD*
 PIT No:
 103

 EASTING:
 390162
 PROJECT No

 NORTHING:
 6490782
 DATE:
 6/7/2

PIT No: 103 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

			Description	lic		Sam		& In Situ Testing	L.	
Ч		epth m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
\vdash			Strata TOPSOIL/SAND SP-SM: fine to medium grained, dark	x		0.1	Se			5 10 15 20
F	F	0.2	grey-brown, with silt, trace rootlets, moist, loose, topsoil.	<u> </u>	D	0.1				
-	-		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							
49	-		- becoming pale grey from 0.65 m depth.							
Ē	-1		- becoming medium dense from 0.9 m depth.							
ł	Ļ									
ł	ļ									
ļ	-									
-8-	ŀ									
F	-2	0.0								-2
Ē	E	2.2	Pit discontinued at 2.2m (Collapsing conditions)							
	ŀ									
47	ļ									
ľ	-3									
ţ	ŀ									
ŀ	-									

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

	SAMPL	LING	I & IN SITU LESTING L	_EGE	ND	
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	
						-

Douglas Partners Geotechnics | Environment | Groundwater

 SURFACE LEVEL:
 51.0 m AHD*
 PIT No:
 104

 EASTING:
 390457
 PROJECT No

 NORTHING:
 6490873
 DATE:
 6/7/2

PIT No: 104 PROJECT No: 212040.00 DATE: 6/7/2022 SHEET 1 OF 1

	Description			Sam	plina 8	& In Situ Testing		
Depth	Description of	Graphic Log	~				Water	Dynamic Penetrometer Test (blows per 150mm)
(m)	Strata	Gra	Type	Depth	Sample	Results & Comments	Ň	
لة - - 0.2	TOPSOIL/SAND SP-SM: fine to medium grained, dark				Ű			5 10 15 20
· • • • • • • • • • • • • • • • • • • •	SAND SP: fine to medium grained, gree, trace silt, moist, medium dense. Bassendean Sand. - becoming pale grey from 0.35 m depth.							
-	Pit discontinued at 1.5m (Collapsing conditions)							
-\$2-3								
-4-3								
-								

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point toad axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point toad axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shard ard penetration test

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

SURFACE LEVEL: 52.8 m AHD* PIT No: 105 EASTING: 390808 PROJECT No: NORTHING: 6490828 DATE: 7/7/2

PIT No: 105 PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	<u>ic</u>		Sam	pling &	& In Situ Testing	_				
⊾	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynami (blo	c Penel ows per	tromete 150mm	r Lest 1)
		Strata	0	É.	ð	Saı	Comments		5	10	15	20
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	XX.							:		:
		SAND SP: fine to medium grained, grey, trace silt, moist, γ medium dense. Bassendean Sand.							ן ב	:		
		^L - becoming pale grey from 0.4 m depth.										:
- 22-												
	1								-1			-
												÷
	1.6	Pit discontinued at 1.6m (Collapsing conditions)	[: · · · ·									<u> </u>
-2-												
-	2											
										÷		÷
. [
- 20-												
:	3									:		
												÷
										÷	:	÷

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

RIG: 8 tonne backhoe, 450 mm toothed bucket

CLIENT:

PROJECT:

LOCATION:

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PIL
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load adiametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shard ard penetration test

SURFACE LEVEL: 52.4 m AHD* PIT No: 106 EASTING: 390952 PROJECT No: NORTHING: 6490637 DATE: 7/7/2

PIT No: 106 PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	. <u>u</u>		Sam	pling &	& In Situ Testing	_	_			
Ъ	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water		nic Pene lows per		
	. ,	Strata	G	Τ	De	San	Comments	-	5	10	15	20
	0.15	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, topsoil.	<u> N </u>	D	0.1				• •		•	•
52	- - - 0.5	SAND SP-SM: fine to medium grained, dark grey-brown, with silt, moist, medium dense. Bassendean Sand. - becoming dark grey from 0.35 m depth.		D	0.4			-		•	•	
	-	SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand.						-		•		
	-1 - -	- becoming pale brown from 0.4 m depth.						-	-1 	•		
51	-										-	
	- 2 2.1								-2	•		
F	- 2.1	Pit discontinued at 2.1m (Collapsing conditions)										
20	-											
	-											
-	-											
-	-3								•			
ŀ	-											
-64	-								:	;	÷	;

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

CLIENT: PROJECT:

LOCATION:

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

	SAMPI	LING	IN SITU TESTING	LEGE	ND	L
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	L
	Bulk sample	Ρ	Piston sample		Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)	
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	L
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	L
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	
						-

Douglas Partners Geotechnics | Environment | Groundwater

Stockland Development Pty Ltd Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA

CLIENT:

PROJECT:

LOCATION:

SURFACE LEVEL: 48.3 m AHD* PIT No: 107 **EASTING:** 390570 **NORTHING:** 6490319

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

	-		Description	ji –		Sam		& In Situ Testing		Dunamia P	enetrometer Test
Ł		epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		per 150mm)
48	-	0.2	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, with roots and rootlets, moist, medium dense, topsoil.		D	0.3	0)				
	-	0.4	PEATY Silty SAND SM: fine to medium grained, dark / grey-brown, moist, medium dense. Swamp Deposits.	¥						- L	
-	- - -		ORGANIC SAND SP-SM: fine to medium grained, brown, with silt, moist, medium dense. With pockets of Cemented Silty SAND SM (Coffee rock). Swamp Deposits.	× × ×							
47	- 1 - -		 becoming brown, with pockets of Cemented Silty SAND SM (coffee rock) from 0.4 m depth. becoming dense to very dense from 0.6 m depth. 	****	D	1.0				-1	
-		1.35 -	SAND SP: fine to medium grained, pale brown, trace silt, moist. Bassendean Sand.							-	
	-									-	
	-2									-2	
46	- - -									-	
										-	
ŀ	-3	3.0	Pit discontinued at 3.0m (Target depth)	·····						- 3	
15	-										
4											

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 Inface level connect

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 U
 Tube sample (x mm dia.)
 PL(A) Point toad aimetral test 18(50) (MPa)

 W
 Water sample (x mm dia.)
 PL(D) Point toad aimetral test 18(50) (MPa)

 P
 W
 Water sample (x mm dia.)

 W
 Water seep
 S

 Standard penetration test
 V

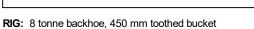
 Water level
 V

 Shear vane (kPa)
 V

 A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDL

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J



SURFACE LEVEL: 49.3 m AHD* PIT No: 108 **EASTING:** 389792 **NORTHING:** 6490248

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	. <u>e</u>		Sam		& In Situ Testing	_	
¥	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Tes (blows per 150mm) 5 10 15 20
48 49	-1	TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. - tree root of diameter of 0.08 m observed at 0.6 m depth. - becoming medium dense from 0.9 m depth. - becoming pale grey from 1.0 m depth.		D	0.1				
46	·2 2.0	Pit discontinued at 2.0m (Collapsing conditions)							
1	100	in a second s	I		大学の				

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDL ₽

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

LOGGED: GG

CLIENT: **PROJECT:** LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA

SURFACE LEVEL: 49.6 m AHD* PIT No: 109 **EASTING:** 389905 **NORTHING:** 6490492

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling &	& In Situ Testing	_	_			
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynami (blo	ic Pene ows per	tromete 150mm	r Test ı)
		Strata	G	тy	De	Sar	Comments	_	5	10	15	20
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, \[\]	<u>XX</u>						- I		:	
-	-	SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.							-		:	
49	-	^L - becoming pale grey from 0.25 m depth.										
[-										:	÷
	-1								-1		:	
	-	- becoming medium dense from 1.1 m depth.									:	:
-	- - 1.5	Pit discontinued at 1.5m (Collapsing conditions)							-			<u> </u>
48	-	Pit discontinued at 1.5m (Conapsing conditions)									:	:
	-											:
-	-2											:
	-										:	:
47	-											
-	-											
	- 3										:	:
-	-											
-	-											

RIG: 8 tonne backhoe, 450 mm toothed bucket

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 Inface level connect

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PID
 Photo ionisation detector (ppm)

 U
 Tube sample (x mm dia.)
 PL(A) Point toad aimetral test 18(50) (MPa)

 W
 Water sample (x mm dia.)
 PL(D) Point toad aimetral test 18(50) (MPa)

 P
 W
 Water sample (x mm dia.)

 W
 Water seep
 S

 Standard penetration test
 V

 Water level
 V

 Shear vane (kPa)
 V

 A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample CDL

SURFACE LEVEL: 48.3 m AHD* PIT No: 110 **EASTING:** 390091 **NORTHING:** 6490372

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

Γ		Description	.u		San	npling &	& In Situ Testing					
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (blow 5	ws per 1	50mm)	F est
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, with roots and rootlets, moist, topsoil.	XX.								•	
47 48 48	- - - - - - - - - - - - - - - - - - -	SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale grey from 0.35 m depth.										
46	- -2 - 2.1 - -	Pit discontinued at 2.1m (Collapsing conditions)							-2		-	· · · ·
45	- 3 - 3 											

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

CDL

CLIENT:

PROJECT:

LOCATION:

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U,x W Core drilling Disturbed sample Environmental sample ₽

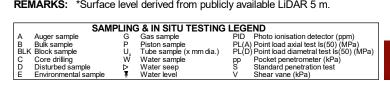
Sand Penetrometer AS1289.6.3.3

SURVEY DATUM: MGA94 Zone 50 J

□ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: 48.9 m AHD* PIT No: 111 **EASTING:** 390426 **NORTHING:** 6490567

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1


	Dent		Description	.e _		Sam		& In Situ Testing	~	Dynamic Penet	romotor Too
-	Dept (m)		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	blows per	150mm)
-	0	0.2	TOPSOIL/ORGANIC SAND SP: fine to medium grained, dark grey-brown, trace silt, with roots and rootlets, moist, medium dense, topsoil.	¥	D	0.1				Ĺ	
-			SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale grey from 0.35 m depth.								
-	-1		- becoming grey-brown from 0.9 m depth.		D	1.0				-1 1	
-			- becoming brown from 1.5 m depth.								
-	-2	2.2								-2	
-	∠	£.£	SAND SP-SM: fine to medium grained, dark brown, with silt, with pockets of Cemented Silty SAND SM (coffee rock), weakly cemented.								
-	-3 3	3.0			D	2.8				-	
	-0 3	3.0-	Pit discontinued at 3.0m (Target depth)							0	

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

LOGGED: GG

CLIENT: **PROJECT:** LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA

SURFACE LEVEL: 50.8 m AHD* PIT No: 112 EASTING: 390710 PROJECT No: PROJECT No: NORTHING: 6490547 DATE: 7/7/2

PIT No: 112 PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

	Dent	Description	ic _		Sam		& In Situ Testing	~	Dynamic Penetrometer Test
Ł	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blows per 150mm)
		Strata	0	ŕ	Ğ	Sar	Comments		5 10 15 20
-	0.15	TOPSOIL/SAND SP-SM: fine to medium grained, dark ¬grey-brown, with silt, trace rootlets, moist, topsoil.	<u> </u>						
-	0.55	SAND SP-SM: fine to medium grained, dark grey-brown, with silt, moist, loose. Bassendean Sand. becoming dark grey from 0.3 m depth.							
3-		SAND SP: fine to medium grained, pale grey, trace silt, moist, loose. Bassendean Sand.							
-	1	- becoming medium dense from 0.9 m depth.		- - - - -					
	1.7 • 2	Pit discontinued at 1.7m (Collapsing conditions)							
-	-3								
ŀ									

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Buik sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

SURFACE LEVEL: 55.9 m AHD* PIT No: 113 EASTING: 390896 PROJECT No: NORTHING: 6490157 DATE: 7/7/2

PIT No: 113 PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

Π		Description	. <u>0</u>		Sam	pling &	k In Situ Testing		_			
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynam (bl	ic Penet ows per ¹⁰	150mete 150mn	r Test n) ²⁰
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand.	\sum								•	
55	- - - - - - 1	^L - becoming pale grey from 0.3 m depth. - becoming medium dense from 0.9 m depth.										· · · · · ·
54	- - - - 1.8 ·	Pit discontinued at 1.8m (Collapsing conditions)										
	-2											
53 .	- 3 3 											

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

CLIENT: PROJECT:

LOCATION:

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

	SAME	PLING	& IN SITU TESTING	LEGE	ND
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)) Point load diametral test ls(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 51.8 m AHD* PIT No: 114 EASTING: 390948 PROJECT No NORTHING: 6489802 DATE: 7/7/2

PIT No: 114 PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

Τ		Description	.ci		Sam	ipling &	& In Situ Testing	_	
ᆋ	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.		•		Ő			
1 51	1	^L - becoming pale grey from 0.3 m depth.							
-	1.4	- becoming medium dense from 1.15 m depth. Pit discontinued at 1.4m (Collapsing conditions)							
	2								
49	3								

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

CLIENT: PROJECT:

LOCATION:

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

☑ Sand Penetrometer AS1289.6.3.3☑ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

5/	AMPLING	3 & IN 5110 1E511NG	J LEGE	:ND	
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental samp	e 📱	Water level	V	Shear vane (kPa)	
					_

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 47.6 m AHD* PIT No: 115 EASTING: 390344 PROJECT No: NORTHING: 6490168 DATE: 7/7/2

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Water Dynamic Penetrometer Test Depth Log Ъ of (blows per 150mm) Type Depth Sampl (m) Results & Comments Strata 20 TOPSOIL/SAND SP-SM: fine to medium grained, dark 0.1 grey-brown, with silt, trace rootlets, moist, topsoil. 0.25 SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, medium dense. Bassendean Sand. SAND SP: fine to medium grained, pale brown, trace silt, moist, medium dense. Bassendean Sand. - becoming brown, weakly cemented from 1.0 m depth. 2 ·2 2.1 Pit discontinued at 2.1m (Collapsing conditions) 3

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

LOGGED: GG

RIG: 8 tonne backhoe, 450 mm toothed bucket

CLIENT:

PROJECT:

LOCATION:

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 Ux
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shard vane (kPa)

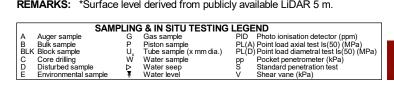
Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

SURFACE LEVEL: 47.7 m AHD* PIT No: 116 **EASTING:** 390260 **NORTHING:** 6489934

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	.ic		Sam		& In Situ Testing	-			
묍	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20		
47		TOPSOIL/SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, topsoil. SAND SP-SM: fine to medium grained, dark grey-brown, with silt, trace rootlets, moist, medium dense. Bassendean Sand. SAND SP: fine to medium grained, pale grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale brown from 0.5 m depth.		D	0.1						
46	-2	- becoming brown from 1.6 m depth.						/	-2		
45	- 2.4	- groundwater observed at 2.3 m depth. Pit discontinued at 2.4m (Collapsing conditions)						>	-		



RIG: 8 tonne backhoe, 450 mm toothed bucket

WATER OBSERVATIONS: Groundwater observed at 2.3 m depth.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

LOGGED: GG

CLIENT: **PROJECT:** LOCATION:

Stockland Development Pty Ltd Proposed Residential Development Stage 2 - Rousset Road, Mariginiup, WA

SURFACE LEVEL: 52.7 m AHD* PIT No: 117 **EASTING:** 390559 NORTHING: 6489830

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

	_	Description	ic		Sam	npling &	& In Situ Testing	-	
벅	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata	0	T,	ă	Sar	Comments	-	5 10 15 20
-	0.15	TOPSOIL/ORGANIC SAND SP: fine to medium grained, grey-brown, trace silt, trace rootlets, moist, topsoil.	K₩.	D	0.1				
-	-	SAND SP: fine to medium grained, pale grey, trace silt, moist, loose. Bassendean Sand.							Į
ŀ	-	\int_{-}^{L} tree trunk observed at 0.3 m depth.							
-23	-	^L - trace roots and rootlets to 0.5 m depth.							
-	-1	- becoming medium dense from 0.9 m depth.							-1
-	-								L
ĺ	- 1.4	Pit discontinued at 1.4m (Collapsing conditions)							
- 55	Ę								
	-								
-	-2								
	Ł								
-	-								
	Ļ								
- 22	t								
2	-								
ŀ	-3								
ŀ	ł								
F	F								
ŀ	ł								

RIG: 8 tonne backhoe, 450 mm toothed bucket

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

SAMPLING & IN SITU TESTING LEGEND Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) A Auger sample B Bulk sample BLK Block sample G P U, W Core drilling Disturbed sample Environmental sample CDL ₽

Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

SURVEY DATUM: MGA94 Zone 50 J

SURFACE LEVEL: 49.3 m AHD* PIT No: 118 EASTING: 390712 PROJECT No

NORTHING: 6489990

PIT No: 118 PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	. <u>0</u>		Sam	npling &	& In Situ Testing				
R	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm) 5 10 15 20		
	0.15	TOPSOIL/SAND SP: fine to medium grained, grey-brown, _trace silt, trace rootlets, moist, topsoil.	Υ <u>Λ</u>						-		
	- - -	SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. - becoming pale grey from 0.35 m depth.									
	- - 1 -	- becoming medium dense from 0.9 m depth.									
	- - - - - - - - 2.1	- becoming pale brown from 1.2 m depth.								1	
47	- 2.1 - - - - - - - 3	Pit discontinued at 2.1m (Collapsing conditions)									
46	- - -										

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

CLIENT: PROJECT:

LOCATION:

RIG: 8 tonne backhoe, 450 mm toothed bucket

LOGGED: GG

SURVEY DATUM: MGA94 Zone 50 J

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: *Surface level derived from publicly available LiDAR 5 m.

S	SAMPLING & IN SITU TESTING LEGEND							
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)				
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)				
C Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)				
D Disturbed sample	⊳	Water seep	S	Standard penetration test				
E Environmental samp	e 📱	Water level	V	Shear vane (kPa)				

SURFACE LEVEL: 53.7 m AHD* BORE No: 123 EASTING: 390881 **NORTHING:** 6490040 **DIP/AZIMUTH:** 90°/--

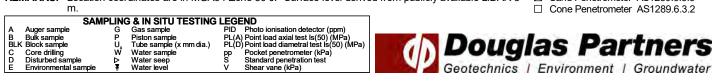
PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

				0		Sam	nolina X	& In Situ Testing				
R	Depth	Descript of	ION	1 phic og	0				Water	Dynamio	c Penetrome ws per 150r	eter Test
	(m)		1	Gra	Type	Deptl	amp	Results & Comments	Ŵ			
	(m)	Strata TOPSOIL/SAND SP-SM: fir grey-brown, with silt, moist. SAND SP: fine to medium g medium dense. Bassendea - becoming pale grey from (ne to medium grained, grained, grey, trace silt, moist, n Sand. 0.45 m depth.	Graphic	Type	Depth	Sample	Results & Comments	Wa		ws per 150r	nm)
	-											
		mm diameter hand auger BORING: Hand auger	DRILLER: GG		LOG	GED	: GG	CASIN	IG: N/	/A		

WATER OBSERVATIONS: No free groundwater observed.

CLIENT:

PROJECT:


LOCATION:

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 m.

SURFACE LEVEL: 47.9 m AHD* BORE No: 124 **EASTING:** 390130 NORTHING: 6490267 DIP/AZIMUTH: 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

Sampling & In Situ Testing Description Graphic Log Dynamic Penetrometer Test Water Depth Ъ of (blows per 150mm) Type Depth Sampl (m) Results & Comments Strata 10 20 TOPSOIL/SAND SP-SM: fine to medium grained, 0.15 grey-brown, with silt, moist. SAND SP: fine to medium grained, grey, trace silt, moist, medium dense. Bassendean Sand. - becoming pale grey from 0.35 m depth. 1.0 1.0 -n Bore discontinued at 1.0m (Target depth) -9 2 <u>ب</u> - 3

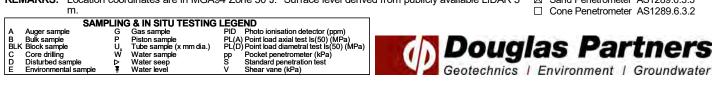
RIG: 110 mm diameter hand auger DRILLER: GG TYPE OF BORING: Hand auger

CLIENT:

PROJECT:

LOCATION:

Stockland Development Pty Ltd Proposed Residential Development


Stage 2 - Rousset Road, Mariginiup, WA

LOGGED: GG

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 m.

SURFACE LEVEL: 50.5 m AHD* BORE No: 125 **EASTING:** 390559 **NORTHING:** 6490700 **DIP/AZIMUTH:** 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	. <u>.</u>		Sam		& In Situ Testing	~	Dunomi	o Donotre	ometer Test
RL	Depth (m)	of Strata			Depth	Sample	Results & Comments	Water	bynami (blc	ows per 1	50mm)
		TOPSOIL/SAND SP-SM: fine to medium grained,	$\sum_{i=1}^{n}$						L		
00	- 	 \moist, medium dense. SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. becoming pale brown from 0.6 m depth. becoming medium dense from 0.75 m depth. 			10						
49	-1 1.0 - - - -	Bore discontinued at 1.0m (Target depth)		—D—	—1.0—						
	- 2 - 2 -										
48	- - -										
	- 3 - -										

RIG: 110 mm diameter hand auger DRILLER: GG TYPE OF BORING: Hand auger

LOGGED: GG

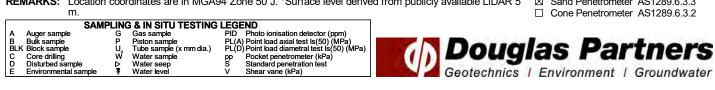
CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

m.

CLIENT:

PROJECT:


LOCATION:

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5

Stockland Development Pty Ltd

Proposed Residential Development

Stage 2 - Rousset Road, Mariginiup, WA

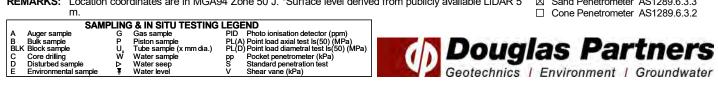
CLIENT: **PROJECT:**

LOCATION:

SURFACE LEVEL: 51.4 m AHD* BORE No: 126 **EASTING:** 389874 **NORTHING:** 6490880 **DIP/AZIMUTH:** 90°/--

PROJECT No: 212040.00 DATE: 7/7/2022 SHEET 1 OF 1

		Description	Dic		Sam		& In Situ Testing	×	Dunem	ia Donat	romoto	r Tocł
Ę	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynam (bl	ic Penet ows per 10	150mr	n) 20
-	0.05	brown, with silt, trace rootlets, moist.							- -		:	
		SAND SP: fine to medium grained, grey, trace silt, moist, loose. Bassendean Sand. - becoming pale grey from 0.3 m depth.		_								
	-1 1.0	Bore discontinued at 1.0m (Target depth)	· · · · ·	—D—	—1.0—				-1			
-									•			
-									• • • •		:	:
-	-2								•		:	
	2											
									•			
-									•			
-											:	÷
	-3								•			
										÷		ł


RIG: 110 mm diameter hand auger DRILLER: GG TYPE OF BORING: Hand auger

LOGGED: GG

CASING: N/A

WATER OBSERVATIONS: No free groundwater observed.

REMARKS: Location coordinates are in MGA94 Zone 50 J. *Surface level derived from publicly available LiDAR 5 m.

Appendix C

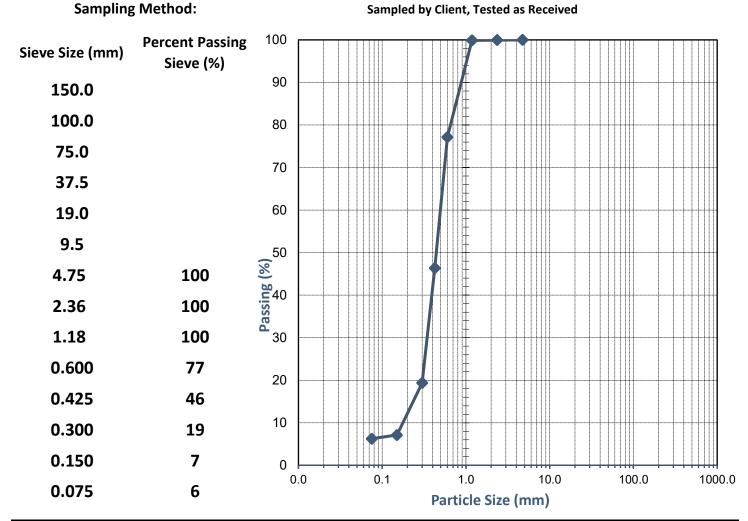
Laboratory Test Certificates

SOIL | AGGREGAT<u>E</u> | CONCR<u>ETE</u> | CRU<u>SHING</u>

TEST REPORT - ASTM D2974-14 (Test Method C)

Client:	Stockland Development Pty Ltd	Ticket No.	\$7024
Client Address:	-	Report No.	WG22.12202-12207_1_ORG
Project:	Proposed Residential Development	Sample No.	WG22.12202-12207
Location:	Stage 2 - Rousset Road, Mariginiup, WA	Date Sampled:	Not Specified
Sample Identification:	Various - See below	Date Tested:	5/08/2022

TEST RESULTS - Organic Content


Sampling Method:	Sampled by Client, Tested as Received
Testing Completed By:	WGLS - JG
Furnace Temperature (°C):	440

Sample Number	Sample Identification	Ash Content (%)	Organic Content (%)
WG22.12202	TP 106, 0.4 m	98.7	1.3
WG22.12203	TP 107, 0.3 m	74.3	25.7
WG22.12204	TP 107, 1.0 m	96.0	4.0
WG22.12205	TP 111, 0.1 m	93.4	6.6
WG22.12206	TP 111, 2.8 m	99.2	0.8
WG22.12207	TP 117, 0.1 m	96.1	3.9

Comments:		
Approved Signatory: Name: Brooke Elliott		Accreditation No. 20599 Accredited for compliance with ISO/IEC 17025 - Testing
Date: 07/October/2022	This docume	nt shall not be reproduced except in full
235 Bank Street, Welshpool WA 6106	08 9472 3465	www.wgls.com.au

	SOIL AGGREGATE CONCRETE	CRUSH	ING
	TEST REPORT - AS 1289.3.6.1		
Client:	Stockland Development Pty Ltd	Ticket No.	\$7024
Client Address:	-	Report No.	WG22.12202_2_PSD
Project:	Proposed Residential Development	Sample No.	WG22.12202
Location:	Stage 2 - Rousset Road, Mariginiup, WA	Date Sampled:	Not Specified
Sample Identification:	TP 106, 0.4 m	Date Tested:	05/08 - 08/08/2022

Comments: Report replaces WG22.12202_1_PSD. Report reissued due to udpated location.

Approved Signatory:

Corett

Name: Cody O'Neill Date: 07/October/2022

235 Bank Street, Welshpool WA 6106

WORLD RECOGNISED

Accreditation No. 20599

This document shall not be reproduced except in full

	SOIL AGGREGATE CONCRETE	CRUSHING
	TEST REPORT - AS 1289.3.6.1	
Client:	Stockland Development Pty Ltd	Ticket No. S7024
Client Address:	-	Report No. WG22.12203_2_PSD
Project:	Proposed Residential Development	Sample No. WG22.12203
Location:	Stage 2 - Rousset Road, Mariginiup, WA	Date Sampled: Not Specified
Sample Identification:	TP 107, 0.3 m	Date Tested: 05/08 - 08/08/2022

Sampling Method: Sampled by Client, Tested as Received 100 **Percent Passing** Sieve Size (mm) Sieve (%) 90 150.0 100.0 80 75.0 70 37.5 60 19.0 9.5 100 50 (%) Bassing (%) 30 4.75 100 2.36 100 1.18 99 0.600 82 20 0.425 60 10 0.300 45 0.150 33 0 0.0 0.1 1.0 10.0 100.0 1000.0 0.075 27 Particle Size (mm)

Comments: Report replaces WG22.12203_1_PSD. Report reissued due to updated location.

Approved Signatory:

Conett

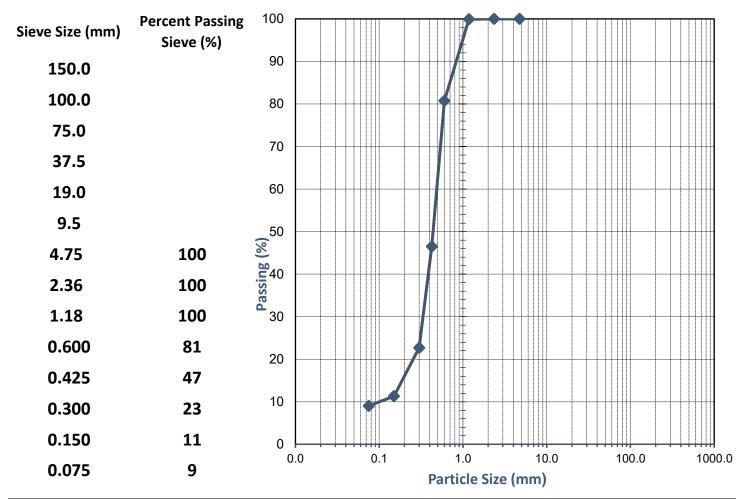
Name: Cody O'Neill Date: 07/October/2022

235 Bank Street, Welshpool WA 6106

WORLD RECOGNISED

www.wals.com.au

Accreditation No. 20599


This document shall not be reproduced except in full

	SOIL AGGREGATE CONCRETE	CRUSH	ING	
TEST REPORT - AS 1289.3.6.1				
Client:	Stockland Development Pty Ltd	Ticket No.	S7024	
Client Address:	-	Report No.	WG22.12204_2_PSD	
Project:	Proposed Residential Development	Sample No.	WG22.12204	
Location:	Stage 2 - Rousset Road, Mariginiup, WA	Date Sampled:	Not Specified	
Sample Identification:	TP 107, 1.0 m	Date Tested:	05/08 - 08/08/2022	

Sampling Method:

Sampled by Client, Tested as Received

Comments: Report replaces WG22.12204_1_PSD. Report reissued due to updated location.

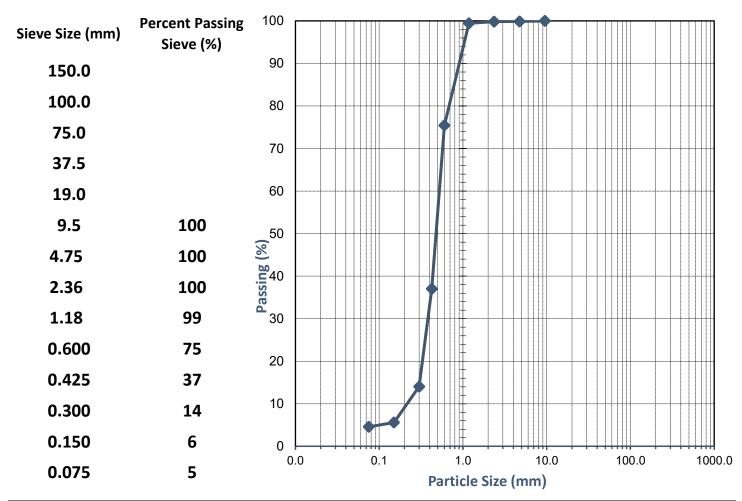
Approved Signatory:

Name: Cody O'Neill Date: 07/October/2022

235 Bank Street, Welshpool WA 6106

WORLD RECOGNISED

Accreditation No. 20599


This document shall not be reproduced except in full

	SOIL AGGREGATE CONCRETE	CRUSHING
	TEST REPORT - AS 1289.3.6.1	
Client:	Stockland Development Pty Ltd	Ticket No. S7024
Client Address:	-	Report No. WG22.12205_2_PSD
Project:	Proposed Residential Development	Sample No. WG22.12205
Location:	Stage 2 - Rousset Road, Mariginiup, WA	Date Sampled: Not Specified
Sample Identification:	TP 111, 0.1 m	Date Tested: 05/08 - 08/08/2022

Sampling Method:

Sampled by Client, Tested as Received

Comments: Report replaces WG22.12205_1_PSD. Report reissued due to updated location.

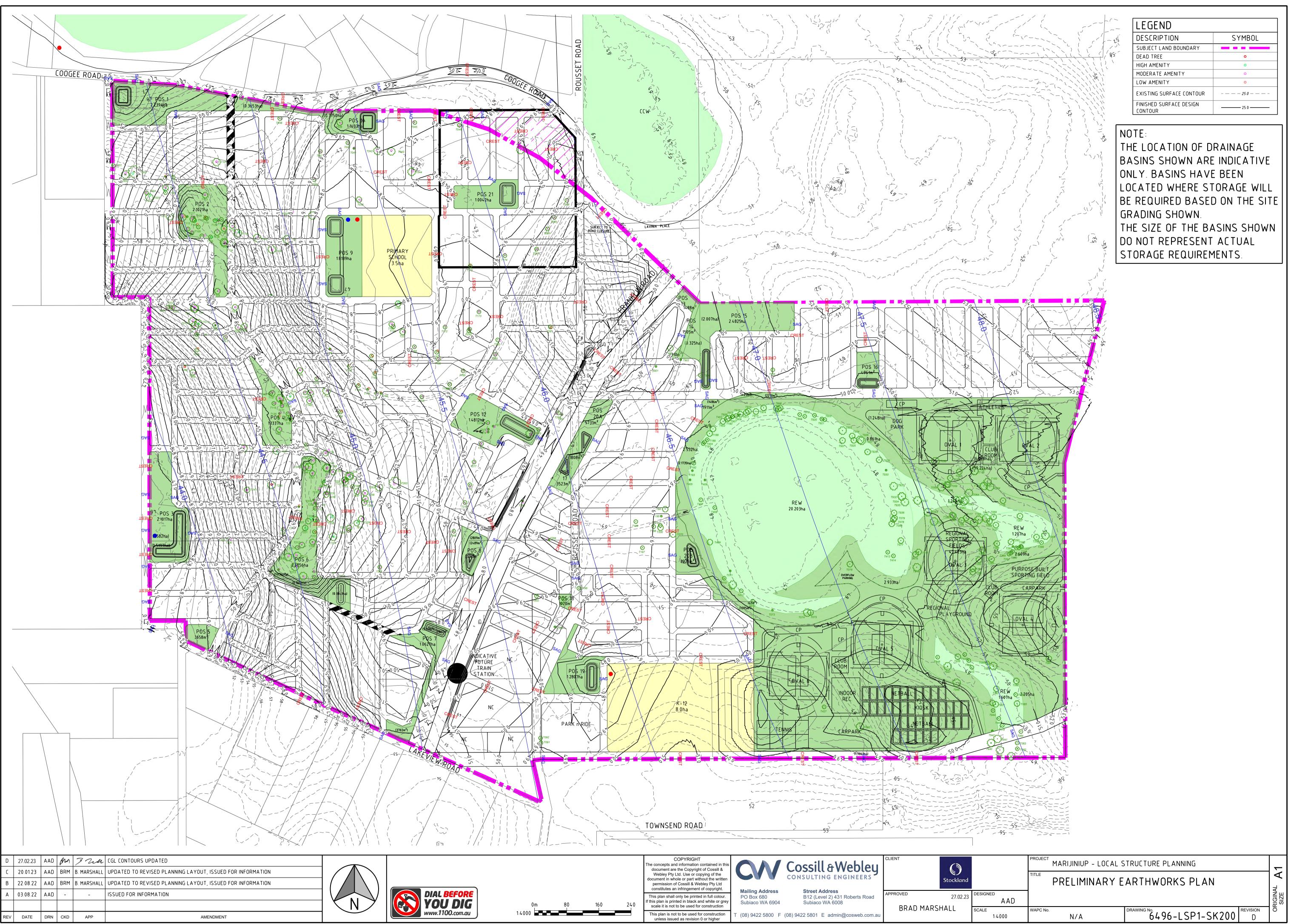
Approved Signatory:

Name: Cody O'Neill Date: 07/October/2022

235 Bank Street, Welshpool WA 6106

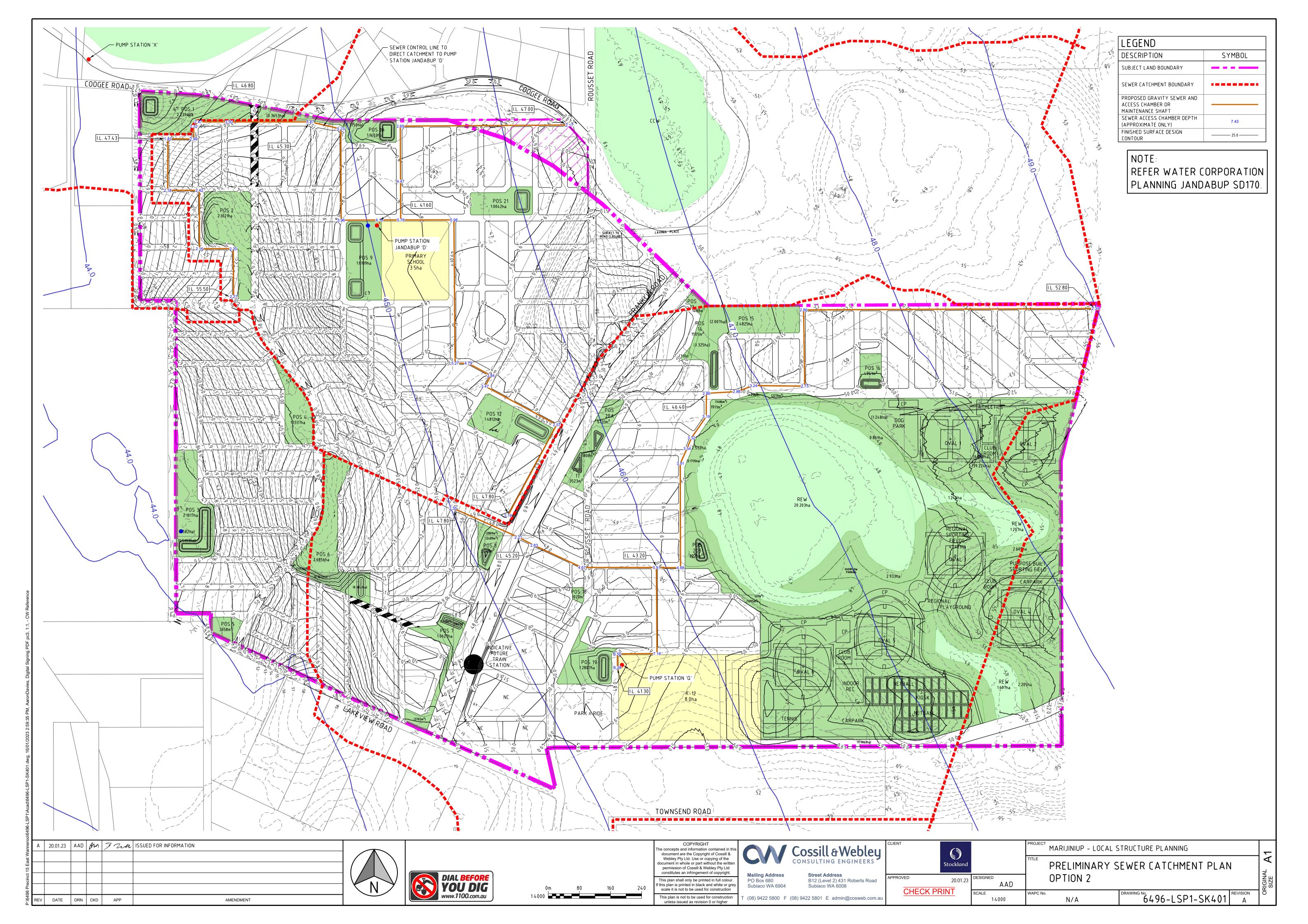
WORLD RECOGNISED

Accreditation No. 20599


This document shall not be reproduced except in full

Appendix C

Preliminary Earthworks Plan


AAD			
1:4000	WAPC No. N/A	^{DRAWING No.} 6496-LSP1-SK200	REVISION D

Appendix D

Preliminary Sewer Catchment Plan

